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Abstract

The Littelmann path model gives a realisation of the crystals of integrable representations
of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent-Littelmann [GL] and
others [BG] [GR] has demonstrated a connection between this model and the geometry of
the loop Grassmanian. The alcove walk model is a version of the path model which is
intimately connected to the combinatorics of the affine Hecke algebra. In this paper we
define a refined alcove walk model which encodes the points of the affine flag variety. We
show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-
Vilonen intersections.

AMS Subject Classifications: Primary 20G05; Secondary 17B10, 14M15.



1 Introduction

A Chevalley group is a group in which row reduction works. This means that it is a group with
a special set of generators (the “elementary matrices”) and relations which are generalisations of
the usual row reduction operations. One way to efficiently encode these generators and relations
is with a Kac-Moody Lie algebra g. From the data of the Kac-Moody Lie algebra and a choice
of a commutative ring or field F the group G(F) is built by generators and relations following
Chevalley-Steinberg-Tits.

Of particular interest is the case where [ is the field of fractions of o, the discrete valuation
ring o is the ring of integers in F, p is the unique maximal ideal in 0 and k = o/p is the residue
field. The favourite examples are

F=C((t) o = C[[t]] k=C,
F = Qp 0= Zp k= Fp,
F=Fq((1)) o = TFy[[1]] k=T,

where ), is the field of p-adic numbers, Z, is the ring of p-adic integers, and F, is the finite field
with ¢ elements. For clarity of presentation we shall work in the first case where F = C((?)).
The diagram

G = G(C(1))
F ul ul
Ul gives K = G(EC[t]) == G (1.1)
Y= k=o/p ul ul ul
I = evi }y(B(C) = B(C)

where B(C) is the “Borel subgroup” of “upper triangular matrices” in G(C). The loop group is
G = G(C((t))), I is the standard Iwahori subgroup of G,

G(C)/B(C) is the flag variety,
(1.2)
G/I s the affine flag variety, and G/K is the loop Grassmanian.

The primary tool for the study of these varieties (ind-schemes) are the following “classical”
double coset decompositions, see [Stl, Ch. 8] and [Macl, §(2.6)]

Theorem 1.1. Let W be the Weyl group of G(C), W =W x hz the affine Weyl group, and
U~ the subgroup of “unipotent lower triangular” matrices in G(F) and h% the set of dominant
elements of by. Then

Bruhat

decomposition G = |—| Buwb K= |—| fwl
weW weWw
Twahori _
decomposition G = |—|~ Twl G = I—l Ul
weW veW
Cartan _ Twasawa
decomposition G = I—I Kix K G = I—l Ut K decomposition

AVent wY €Ebz



It should be stressed that we have, intentionally, not given precise definitions of the objects in
Theorem 1.1. Even in the classical case, the definition of hz in Theorem 1.1 is sensitive to small
changes in the definition of G (center, completions, etc) and there are subtleties in making these
definitions correctly in general. These issues are partly treated in [Gall, Theorem 14.10, Lemma
16.14], [Ga2, Theorem 1.8], [GR) Remark 6.10] and [BF, Proposition 3.7].

In this paper we shall refine the Littelmann path model (in its alcove walk form, see [Ra]) by
putting labels on the paths to provide a combinatorial indexing of the points in the affine flag
variety. This combinatorial method of expressing the points of G/I gives detailed information
about the structure of the intersections

UvInIwl  with  v,weW. (1.3)

The corresponding intersections in G/K have arisen in many contexts. Most notably, the set of
Mirkovié-Vilonen cycles of shape NV and weight 11 is the set of irreducible components of the
closure of U"t,vK N Kt\vK in G/K,

MVAY),v =Irr(U-t,vK N Kty K),

and
when k =TF,, Cardg g (U t,v K NKty\vK) is

(up to some easily understood factors) the coefficient of the monomial symmetric function m,,v
in the expansion of the Macdonald spherical function Pyv.

Sections 2-6 give elementary treatments of Borcherds-Kac-Moody Lie algebras, Chevalley
groups, the flag variety, loop groups and affine flag varieties. With future developments in mind
we have presented this material in the context of loop groups of symmetrizable Kac-Moody
groups. In spite of the generality in Sections 2-6, the main results of this paper, given in Section
7, are only for loop groups of finite dimensional Chevalley groups. We do have some results in
the more general case, but the restrictions of time and space have forced us to postpone the
exposition of these results to a future paper.
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We thank these institutions for support of our research.

2 Borcherds-Kac-Moody Lie algebras

This section reviews definitions and sets notations for Borcherds-Kac-Moody Lie algebras. Stan-
dard references are the book of Kac [Kac], the books of Wakimoto [Wakl][Wak2], the survey
article of Macdonald [Mac3] and the handwritten notes of Macdonald [Mac2]. Specifically, [Kac|
Ch. 1] is a reference for §2.1, [Kad, Ch.3 and 5] for §2.2, and [Kad, Ch. 2] for §2.3.

2.1 Constructing a Lie algebra from a matrix

Let A = (ai;) be an n x n matrix. Let

r = rank(A), ¢ = corank(A), so that r+¢=n. (2.1)



By rearranging rows and columns we may assume that (aij)1§i7jgr is nonsingular. Define a
C-vector space

b’ has basis hi,...,h,, and

ol
h=boo, where 0 has basis dy, ..., d,. (2.2)
Define ag,...,a, € h* by
Ozi(hj) = aij and Oél'(dj) = 5i,7’+j7 (2.3)
and let
h =1b'/c, where  c¢={heb’|a;(h)=0foralll<i<n}. (2.4)
Let ¢1...,co € b be a basis of ¢ so that hy,..., h.,c1,...,cp,dy,...,dy is another basis of h and
define K1,...,k¢ € h* by
Iii(h]’) = O, Iﬁi(Cj) = 51']" and Ki(dj) =0. (25)
Then aq,...,an, K1, - .., ke form a basis of h*.
Let a be the Lie algebra given by generators b, eq,...,en, fi,..., fn and relations
[h, h'] =0, leis 5] = dijhi, [h, e;] = ai(h)e;, (b, fi] = —ai(h) fi, (2.6)
for h,h' € h and 1 < 1,5 < n. The Borcherds-Kac-Moody Lie algebra of A is
g= %7 where vt is a the largest ideal of a such that tNh = 0. (2.7)
The Lie algebra a is graded by
Q= ZZO@, by setting deg(e;) = ay, deg(f;) = —ay, deg(h) =0, (2.8)
i=1

for h € h. Any ideal of a is Q-graded and so g is Q-graded (see [Mac2l, (1.6)] or [Mac3|, p. 81]),

g=200D (@ ga> , where g, ={x €g/|[h,z] = alh)xz}, and (2.9)

a€ER
R={a|a#0and g, # 0} is the set of roots of g.

The multiplicity of a root a € R is dim(g,) and the decomposition of g in (2.9) is the decompo-
sition of g as an h-module (under the adjoint action). If

nt is the subalgebra generated by eq,...,e,, and
n~ is the subalgebra generated by fi,..., fx,

then (see [Mac3l, p. 83| or [Kacl §1.3])

g=n"@bent and bh=go, nT=P g 1= 0. (2.10)
a€RT a€R*
where
n
RT=Q"NR  with Q" =) Zya. (2.11)
i=1

4



Let ¢ and 0 be as in (2.2)) and (2.4). Then
0 acts on g’ = [g, g] by derivations, c=Z(g)=Z(g),

g=n"ohodnt =a/r=¢g %0,
g=n"@h o =gg, (2.12)

g=n"obont =g/

and g’ is the universal central extension of g’ (see [Kac, Ex. 3.14]).

2.2 Cartan matrices, sl, subalgebras and the Weyl group

A Cartan matriz is an n x n matrix A = (a;;) such that
a;j € Z, ai; = 2, a;j <0ifi#j, a;j # 0 if and only if aj; # 0. (2.13)

When A is a Cartan matrix the Lie algebra g contains many subalgebras isomorphic to sly. For
1 <i <, the elements e; and f; act locally nilpotently on g (see [Mac3, p. 85] or [Mac2, (1.19)]
or [Kac, Lemma 3.5]),

span{e;, fi, h;} = sla, and 5; = exp(ade;) exp(—adf;) exp(ade;) (2.14)

is an automorphism of g (see [Kac, Lemma 3.8]). Thus g has lots of symmetry.
The simple reflections s;: h* — bh* and s;: h — b are given by

$id =X — Ah) oy and sih = h — a;(h)h;, for 1 <i <mn, (2.15)
Aeb* hebh, and
5i8a = Os;a and S;h = s;h, fora e R, heb.
The Weyl group W is the subgroup of GL(h*) (or GL(h)) generated by the simple reflections.
The simple reflections on h are reflections in the hyperplanes

b ={hebh|a(h) =0}, and c=p" =[p
=1

The representation of W on h and h* are dual so that

Mwh) = (w™A)(h),  forwe W, Xebh* heb.

The group W is presented by generators si,..., s, and relations
522 =1 and 8i8jS; -+ = 5j8iSj - (2.16)
S—_—

m;; factors m;; factors

for pairs ¢ # j such that a;ja;; < 4, where m;; = 2,3,4,6 if a;;a;; = 0,1, 2,3, respectively (see
[Mac2l (2.12)] or [Kac, Prop.3.13]).
The real roots of g are the elements of the set

Rie=|JWa;, and  Rin=R\Rp (2.17)
i=1
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is the set of imaginary roots of g. If @« = way; is a real root then there is a subalgebra isomorphic
to sly spanned by
ea = We;, fo=wf;, and h, = Why, (2.18)

and s, = ws;w !

is a reflection in W acting on h and h* by

SaA = A — A(hq) and Sah = h — a(h)hg, respectively. (2.19)
Let hbg = R-span{hq,...,hy,d1,...,ds}. The group W acts on hr and the dominant chamber
C={\ e€br| (V) >0foralll <i<n} (2.20)

is a fundamental domain for the action of W on the Tits cone

X = U wC = {h € hr | (a, h) < 0 for a finite number of « € RT}. (2.21)
weWw

X = bg if and only if W is finite (see [Kac, Prop. 3.12] and [Mac2l (2.14)]).

2.3 Symmetrizable matrices and invariant forms

A symmetrizable matriz is a matrix A = (a;j) such that there exists a diagonal matrix
& = diag(er,...,€n), € € Ry, such that A€ is symmetric. (2.22)

If (,): g x g — C is a g-invariant symmetric bilinear form then

(hiy h) = ([es, fil, B) = —(fi, [ei, h]) = (fi, ci(h)ei) = ai(h){ei, fi),

so that
<hi, h> = O[Z'(h)q, where €, — <6i, f2> (223)

Conversely, if A is a symmetrizable matrix then there is a nondegenerate invariant symmetric bi-
linear form on g determined by the formulas in (2.23)) (see [Mac2, (3.12)] or [Kac, Theorem 2.2]).
If A is a Cartan matrix and (,): h x h — C is a W-invariant symmetric bilinear form then

<h1,h> = —<Sihi, h> = —<h¢, Szh> = —<hi,h — Oéz(h)hl> = —<hi, h> + Oél(h)<h@, hl>,

so that
<hi, h> = Oéi(h)Gi, where € = %<hz, hl> (224)

In particular, a;(hj)e; = (hi, hj) = (hj, hi) = o;(h;)e; so that A is symmetrizable. Conversely,
if A is a symmetrizable Cartan matrix then there is a nondegenerate W-invariant symmetric

bilinear form on h determined by the formulas in (2.24) (see [Mac2, (2.26)]).

If o € far Ya € g then [-raaya] € [gaygfa] C go="bhand <h7 [$ayya]> = —([aza,h],ya> =
a(h)(za, Ya), so that

[Tas Ya| = (Tay Ya) s where (h,h.) = a(h) for all h € h (2.25)
determines h) € h. If & € Ry and eq, fo, ha are as in (2.18) then
hoz = [eaafa] = <eaafa>hx and <€Oc7 fa> = %<houha>- (226)

Let
o = (eq, fa)a = 5 {ha, ha)or so that a(h) = (h, ha). (2.27)



Use the vector space isomorphism

b — b . .

h <ha > : : VvV o_ . * \Y,

h oV to identify Q" = E_l Zh; and Q"= E_l Zo; (2.28)
h, —  « = =

and write

AV, 1) = p(hy) if A =Xaj +-+Aa, and hy = Ahi+ -+ kg (2.29)

3 Steinberg-Chevalley groups

This section gives a brief treatment of the theory of Chevalley groups. The primary reference is
[St] and the extensions to the Kac-Moody case are found in [T1].

Let A be a Cartan matrix and let R, be the real roots of the corresponding Borcherds-Kac-
Moody Lie algebra g. Let U be the enveloping algebra of g. For each o € R, fix a choice of e,
in (a choice of w). Use the notation

1 1 .
To(t) = exp(teq) =1+ €4 + athi + gt?’ei +oe in U[[t]].

Then
To(t)za(u) = xo(t + u) in U[[t, u]].

Following [T1, 3.2], a prenilpotent pair is a pair of roots a,3 € Ry such that there exists
w,w € W with
wa,wf € RE and w'o,w'B € —RE,.

This condition guarantees that the Lie subalgebra of g generated by g, and gg is nilpotent. Let
@, 3 be a prenilpotent pair and let e, € g, and eg € gg be as in (2.18]). By [St, Lemma 15] there
are unique integers C&% such that

To(t)rg(u) = xﬁ(u)xa(t)xa+g(0iil tu)xga_,_g(szlﬁtzu)xa+gg(Colé’72ﬁut2) e
Let F be a commutative ring. The Steinberg group
St is given by generators x,(f) for a € Ry, f € F,

and relations

Ta(f1)Ta(f2) = Talfi + f2),  for a € Ry, and (3.1)

Ta(f)2p(f2) = 25(f2)Ta(f1)Tas 8(Cy g 1 F2) 0201 8(Co b [T f2)Tarap(Co 5 fif3) - (3.2)
for prenilpotent pairs a, 8. In St define

na(g) = ma(g)x—a(_gil)xa(g)v no =na(l), and hev(g) = na(g)ngl, (3.3)

for « € Ryc and g € F*.
Let bz be a Z-lattice in h which is stable under the W-action and such that

bz 2 Q, where QY = Z-span{hq,...,h,}



with hi,...,h, asin (2.2)). With
T given by generators hyv(g) for \Y € hz, g € F*, and relations
hav(gi)hav(g2) = hav(gig2)  and  hav(g)huv(9) = havipv (9), (3.4)

the Tits group
G is the group generated by St and T

with the relations coming from the third equation in and the additional relations
hav (9)Ta(Hhav(9) " = 2a(g™ ) and  nihav(g)n; ! = e (g). (3.5)
For a, B € Rye let €43 = £1 be given by
Sa(€p) = €apes,p; where 5o = exp(ade,) exp(—adf,) exp(adey)
(see [CC, p.48] and [T4, (3.3)]). By [Stl, Lemma 37] (see also [T, §3.7(a)])
na(9)25(f)nal(9) ™! = zs.pleasg ), hav(@)z(f)hav(9) Tt = 2a(gPrf), (3.6)
and  na(g)hav(9)nalg) ™" = hsaav(9). (3.7)
Thus G has a symmetry under the subgroup
N generated by T and the n,(g) for a € Ry, g € F*. (3.8)

If F is big enough then N is the normalizer of T' in G [Stl, Ex. (b) p.36] and, by [Stl Lemma 27],
the homomorphism
N —

na(Q) = Sa

Remark 3.1. [T, §3.7(b)] If hz = Q" and the first relation of (3.5)) holds in St then there is a
surjective homomorphism ¢: St — G. By [Stl, Lemma 22], the elements

is surjective with kernel T'. (3.9)

-1 -1

nahav (9)ng  hsoav (9) and  na(9)ng hav(9)

automatically commute with each xg(f) so that ker(¢)) C Z(St). In many cases St is the
universal central extension of G (see [T, 3.7(c)] and [Stl Theorems 10,11,12]).

Remark 3.2. The algebra g’ = [g,g] in (2.12)) is generated by e4, @ € Rye. A g'-module V is
integrable if ey, o € Ry, act locally nilpotently so that

zo(c) = exp(ceq), for « € Ry, c € C, (3.10)

are well defined operators on V. The Chevalley group Gy is the subgroup of GL(V') generated
by the operators in . To do this integrally use a Kostant Z-form and choose a lattice in the
module V' (see [T1, §4.3-4] and [St], Ch. 1]). The Kac-Moody group is the group G ks generated
by symbols

zo(c), @ € Ry, c € C, with relations zalc1)za(c2) = zolcr + c2)

and the additional relations coming from forcing an element to be 1 if it acts by 1 on every
integrable g’ module. This is essentially the Chevalley group Gy for the case when V is the
adjoint representation and so Gy C Aut(g’). There are surjective homomorphisms

St(C) - Ggnm — Gy.
See [Kac, Exercises 3.16-19] and [Ti, Proposition 1].



Remark 3.3. [St, Lemma 28] In the setting of Remark let Ty, be the subgroup of Gy
generated by hov(g) for a € Ry, g € F*. Then

-1 i i gl L gtmen)) = ‘
hay(g1) -~ hay(gn) =1 if and only if g¢; g,! =1 for all weights p of V,

Z(Gy) = {hay (91) - hay(gn) | g% - g8 =1 for all § € R},
and if F is big enough

Tv = {hyy(g1) - hoy(gn) | g1, gn €F*},

where wy, ... ,w, is a Z-basis of the Z-span of the weights of V' [Stl Lemma 35].

n

4 Labeling points of the flag variety G/B

In this section we follow [St, Ch.8] to show that the points of the flag variety are naturally
indexed by labeled walks. This is the first step in making a precise connection between the
points in the flag variety and the alcove walk theory in [Ral.

Let G be a Tits group as in over the field F = C. The root subgroups

Xy =A{za(c) | c€ C}, for a € Ry, satisfy wXgw ™t = Xyp, (4.1)
for w € W and 8 € Rye, since hov(c)Xghav(c) ™! = X5 and naXgng' = Xs 5. As a group X, is

isomorphic to C (under addition).
The flag variety is G/ B, where the subgroup

B is generated by T and x,(f) for « € R, f € C. (4.2)
Let w € W. The inversion set of w is
Rw)={a € R} |wa ¢ R, and (w) = Card(R(w)) (4.3)

is the length of w. View a reduced expression @ = s;, - - - 5;, in the generators in (2.16) as a walk
in W starting at 1 and ending at w,

1 — 8, — 88y, — - — S-S, =Ww. (4.4)

Letting x;(c) = zq,(c) and n; = nq, (1), the following theorem shows that

BwB = {x;, (cl)nalxiQ(CQ)n; . ”IL’Z'Z(Cg)nZ-_ZlB | c1,...,c0 € C} (4.5)
so that the G/B-points of BwB are in bijection with labelings of the edges of the walk by
complex numbers ¢1, ..., c,. The elements of R(w) are

/81 = Oy, /82 = S U4y, ) ﬁf = Sip v Sy Oy, (46)

and the first relation in (3.6)) gives

Ziy (cl)ni_llaui2 ((:2)711._21 . 'l’z‘z(cz)nle =g, (£c1) - 28, (£cr) N, (4.7)

-1 -1
where n,, = n;, n;,



Theorem 4.1. [St, Thm.15 and Lemma 43| Let w € W and let n,, be a representative of w
m N. If

R(w) ={b1,...,0¢} then {zp,(c1) -+ xg,(ce)nw | c1,...,c0 € C}
s a set of representatives of the B-cosets in BwB.

Proof. The conceptual reason for this is that

BuwB=| [] X« |nwB=nu I % I %-.|B
acRL w=lagR{ w-laeRk
=nw| [J] Aww|B=| J] ¥ ]|nB
w*loz%Rj; aER(w)

= {zg,(c1) - xp,(co)nwB | c1,...,c0 € F}.

Since R, may be infinite there is a subtlety in the decomposition and ordering of the product
of X, in the second “equality” and it is necessary to proceed more carefully. Choose a reduced
decomposition w = s;, ---s;, and let (1, ..., B¢ be the ordering of R(w) from (4.6]).

Step 1: Since R(w) C Ry there is an inclusion
{zp,(c1) - xg,(ce)nyB | c1,...,¢p € C} C BwB.

To prove equality proceed by induction on £.
Base case: Suppose that w = s;. Let a € R, and ¢,d € C. If ¢ = 0 or «, aj is a prenilpotent

pair then, by relation ,
To(d)Ta, (c)nj*lB = Zq, (c’)n{lB, for some ¢’ € C. (4.8)
If o, v is not a prenilpotent pair and ¢ # 0 then «, —«; is a prenilpotent pair and, by ,
To(d)wa, (c)n{lB = Ta(d)T o, (cH)B = T_q, (cH)B = To, (c)nng.

Thus {z, (c)nj_lB | c € C} is B-invariant and so Bs;B = {,, (c)nj_lB | c e C}.
Induction step: If w = s;, - - - s;, is reduced and if £(ws;) > £(w) then, by induction,

Bws;jB C BwB - Bs;B = {xp,(c1) - g, (Cg)xwaj(c)nwnj_lB | c1y...,c0,c € F}

so that Bws;B = {xg,(c1)--- 25, (cex1)nws; B | c1, ..., ceq1 € C} with By = way.
Step 2: Prove that BwB = BvB if and only if w =v by induction on ¢(w).

Base case: Suppose that £(w) = 0. Then BwB = BvB implies that v € B so that there is
a representative n, of v such that n, € BN N. Then vR} C R}, since n,Xon, I = x,, € B for
a € R{,. So ¢(v) = 0. Thus, by (2.16]), v = 1.

Induction step: Assume BwB = BvB and s; is such that {(ws;) < {(w). Since BvB-Bs;B C
BvB U Bus;B (see [St, Lemma 25],

BwsjB C BwB - BsjB = BvB - BsjB C BvB U BvsjB = BwB U Bvs;B.

Thus, by induction, ws; = w or ws; = vs;j. Since ws; # w, it follows that w = v.
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Step 3: Let us show that if zq,, (cl)ni_l1 Ty, (Cg)ni_le = Ta,, (c’l)nl_l1 : --maié(c’e)ni_élB, then
¢ =c, fori=1,2,... 0. The left hand side of

Ty (02)71;1 . x”(Cg)ni_ng = ny, xi, (¢ — (:1)711»_11 . -xil(c’z)ni_llB
isin Bs;, - - - s;,B. If ¢] # ¢1 then nzfllxil (cy—c1)n;, € Bs;, B and the right hand side is contained
in
n;lazil(cll —c1)ny, Bsi, -+ s5i,B C Bs;,B - Bsj, ---s;,B = Bs;, ---s;,B.
By Step 2 this is impossible and so ¢} = ¢;. Then, by induction, ¢; = ¢; for i =1,2,...,¢.
Step 4: From the definition of R(w) it follows that if o, € R(w) and a + [ € Ry then

a+ (€ R(w) and if o, 8 € R(w) then «, 5 form a prenilpotent pair. Thus, by [St, Lemma 17],
any total order on the set R(w) can be taken in the statement of the theorem. O

Remark 4.2. Suppose that A € h* is dominant integral and M ()\) is an (integrable) highest
weight representation of G generated by a highest weight vector v;f. Then the set Bva;\r
contains the vector wvy and is contained in the sum @, M(\), of the weight spaces with
weights > wA. This is another way to show that if w # v then BwB # BvB and accomplish

Step 2 in the proof of Theorem [£.1]

5 Loop Lie algebras and their extensions

This section gives a presentation of the theory of loop Lie algebras. The main lines of the theory
are exactly as in the classical case (see, for example, [Mac2l, §4] and [Kacl ch. 7]) but, following
recent trends (see |Ga2]. [GK], [GR] and |[Rou]) we treat the more general setting of the loop
Lie algebra of a Kac-Moody Lie algebra.

Let go be a symmetrizable Kac-Moody Lie algebra with bracket [,]o: go ® go — go and
invariant form (,)o: go X go — C. The loop Lie algebra is

aolt,t 7] = C[t,t 7 ®c go with bracket [tz t"ylo = ™" [, y]o,

for x,y € go. Let

g=golt,t '|@CcaCd, g =golt,t ' ]&Ce, g =golt,t ] = &
where the bracket on g is given by
[tz t"y] = """z, Y]o + Smtnom{z, y)oc, ce Z(g), [d,t"z] = mt"x. (5.1)

By [Kac, Ex. 7.8], ¢’ is the universal central extension of g’. An invariant symmetric form on g
is given by

(c,d) =1, (c,t™y) = (d,t™y) =0, (c,c) =(d,d) =0, (5.2)
and
<‘T7y>07 1fm+n:07
t"ax, t"y) = 5.3
< y) {O, otherwise, (5:3)

for x,y € go, m,n € Z.
Fix a Cartan subalgebra ho of go and let

h="hodCcCd, h' =ho @ Cc, b" = bo. (5.4)
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Asin (2.2)), let hy,..., hy,d1,...,ds be a basis of hy and let

{h1,...,hpn,di,...,dy,c,d} be a basis of h and
{wi, ..., wn,01,...,00 Ao, 0} the dual basis in h*

so that
(5([)0) = 0, (5(6) = 0, (5(d) = 1, and Ao(f]()) = 0, AO(C) = 1, Ao(d) =0. (56)
Let R be as in . As an h-module

Poairs | @ P ok | ®b, where §=ho& Cea Cd, (5.7)
aER kEZ;ﬁo
keZ

Gatks = t"ga, gks = t"ho, and R = (R+Z8)UZx (5.8)

is the set of roots of g.
Let a € Rye with a = wa; and fix a choice of eq, fo and hy, in (2.18]) (choose w). Then

€C_a+ké = tkfow ffaJrké = t_keav hfaJrké - _ha + k<€aa fa>OC7 (59)
span a subalgebra isomorphic to sly. If go = ny @© ho © nar is the decomposition in (2.10) and

nt is the subalgebra generated by n(f and e_q1ks for a € Rye, k € Z~0, and
n~ is the subalgebra generated by n, and f_,4xs for a € Rye, k € Z~o,

then

g=n" @®hdn" with nt = no & @ Satks and n~ =ng; @ @ Sa+ks
acRU{0} aceRU{0}
k€Z~0 k€Z<o

The elements e_q 45 and f_q s in (5.9) act locally nilpotently on g because f, and e, act
locally nilpotently on gg. Thus

5 ks = exp(ad t® f,) exp(—ad t%e,) exp(ad t* f,) (5.10)
is a well defined automorphism of g and
S_a+ké88 = Os o8 and  S_qipsh = s_aqsh, (5.11)
for h € h and 3 € R, where S—atks: b* — b and s_o4ks: h — b are given by
S—atkoA = A = Mh—qtks)(—a+kd) and s_qiksh =h— (—a+ké)(h)h_aiks,  (5.12)

for A € h* and h € h. The Weyl group of g is the subgroup of GL(h*) (or GL(h)) generated by
the reflections s_q+ks,

Wagt = (S—atks | @ € Rye, k € 7). (5.13)
Noting that bh*=h5&CAy P Cs and b =hoP Cc® Cd, use (5.12) to compute
S—atks(A) = A+ AMha) (—a + k9), S—atks(h) = h+ (h)(—ha + k{ea, fa)oc),
S—atks(CAo) = LAo — kl{eq, fa)o(—a + kd), S_qiks(me) =
S—atks(md) = md, S—atks(ld) = fd k‘f( ha + k(ea, fa)oc)-
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for A € b, h € ho, m,¢ € C. For a € Ry and k € Z

define tgov € Wag by S_atks = tkaVS—as (5.14)
and use (2.26) and (2.27) to compute
trhav(A) = X = A(khy)d, trav (h) = B kaV (h)c,
teav (CNg) = EAO + lkaV El (khay kha)od, trav(me) =
trav (md) = trav (bd) = + Ckhe — €4 (khq, kha)oc

Then tkavt]ﬂv (5\) = tkha (5\ — X(]hﬁ)é) =— S\(kha —f—jhg)(s, and

travtigy (CAo) = tiav (CAg + 58" — €1 (jhg, jha)od)
= (Ao + lka" — € (kha, kha)od + £5B8Y — £5BY (kha)d — L3 (jhg, jha)od
= (Ao + l(ka” + jBY) — €L (kho + jhg, kha + jhg)od.

This computation shows that ty.vt;gv = tjovirgv. Thus, if Wy is the Weyl group of go and
Q* = Z-span{ay,...,a,.} then

Wag = {t)\vw ‘ A\ e Q" we W()} with vty =ty and  wtyv = tyrvw, (5.15)

for w € Wy, \V, " € Q*.
Since Co is W,g-invariant, the group Wa,g acts on h*/Cé and W,g acts on the set

(5 + Ao +C8)/Cs — b}

A+ Ag+C6 — A (5.16)
and the W,g-action on the right hand side is given by
5a(A) = A = A(ho)a and thav(A) = A + kaV, for A € bo. (5.17)

Here b is a set with a W,g-action, the action of Wyg is not linear.

6 Loop groups and the affine flag variety G/I

This section gives a short treatment of loop groups following [St, Ch.8] and [Macll, §2.5 and
2.6]. This theory is currently a subject of intense research as evidenced by the work in [Ga2],
[GK], [Rem)], [Roul, [GR].

Let go be a symmetrizable Kac-Moody Lie algebra and let hz be a Z-lattice in hy that
contains QY = Z-span{hy,...,h,}.

The loop group is the Tits group G = G(C((t))) (6.1)

over the field F = C((¢)). Let K = Go(C[[t]]) and Go(C) be the Tits groups of go and hz over
the rings C[[t]] and C, respectively, and let B(C) be the standard Borel subgroup of Go(C) as
defined in (4.2)). Let

U~ be the subgroup of G generated by x_,(f) for « € R, and f € C((t)), (6.2)
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and define the standard Iwahori subgroup I of G by

G = Go(C((t)))

Ul Ul

K = GoC[t]) == Go(C) (6.3)
Ul Ul Ul

I = ev, 2 (B(C)) ™= B(C).

The affine flag variety is G/I.
For a+ j6 € Rye + 76 and ¢ € C, define

Tatjs(c) = To(ct?) and taw = hyv (t71), (6.4)

and, for ¢ € C*, define
Na+j5(€) = Tatjo(€)T—a—js(—c™)Tasjs(c), (6.5)
Natjs = Natjs(1),  and  Biaijsv (€) = narjs(c)ng s (6.6)

analogous to (3.3).
The group

W ={tzvw | A €bgwe W}  with tyiy =ty and wiy =tyvw,  (6.7)
acts on b @ Co by
v(p+ kd) = vp + ko and tawv(pu+ ko) =p+ (k— (A, u)é (6.8)
for v € Wy, AV € bz, p € b, and k € Z. Then nojs(c) = t_jovna(c) = nalct!),
napiks (g = nawp(ct®)ng' = w5, p(capet™) = 24, (5415 (€a,6¢)

for o € Ry, and, for AV € by,

— _\V
txvagirs(O)tyy = Tapks (N Pe) = 3y (s ()
Thus the root subgroups
Xotjs = {Tatjs(c) | c€CY  satisfy  wXayjpw™' = Xy(atio) (6.9)

for w € W and a+ jo € Rye +7Z4. These relations are a reflection of the symmetry of the group
G under the group defined in ([3.8)):

N = N(C((t))) generated by na(g), hav(g), for g € C((t))*, (6.10)

a € Ry, and \V € bz. The homomorphism N — Wy from (3.9)) lifts to a surjective homomor-
phism (see [Macll p.26 and p.28])

N — w
Natjs — t_javSa with kernel H generated by hy(d), d € C][[t]]*.

tav — tX
Define 3 3
Rl = (RY +Z500) U (—RE +Z5¢0) and RY = —Rf+7Zs (6.11)
so that _
Xogjs €1 if and only if a4+ j0 € R, and

i (6.12)
Xotjs CU-  ifandonly if o+ j§ € RY.

Note that R, U (—RL) = RV U (—RY) = Ry, + Z4.
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7 The folding algorithm and the intersections U vl N Iwl

In this section we prove our main theorem, which gives a precise connection between the alcove
walks in [Ra] and the points in the affine flag variety. The algorithm here is essentially that
which is found in [BD] and, with our setup from the earlier sections, it is the ‘obvious one’. The
same method has, of course, been used in other contexts, see, for example, [C].

A special situation in the loop group theory is when g is finite dimensional. In this case, the
extended loop Lie algebra g defined in is also a Kac-Moody Lie algebra. If Gy is the Tits
group of go and G = Go(C((t))) is the corresponding loop group then the subgroup I defined in
differs from the Borel subgroup of the Kac-Moody group Gg s for g only by elements of
T, and the affine flag variety of G coincides with the flag variety of Ggjps. Thus, in this case,
Theorem provides a labeling of the points of the affine flag variety.

Suppose that gg is a finite dimensional complex semisimple Lie algebra presented as a Kac-
Moody Lie algebra with generators ei,...,en, fi,..., fn,h1,...,hn, and Cartan matrix A =
(ai(Pj))1<; j<pn- Let @ be the highest root of R (the highest weight of the adjoint representation),
fix

ey € 9y, fo €9-p suchthat (ey, fo)o=1,

and let
€0 = €5 = tfcpa fo= f—<p+6 = t_letp, ho = [GO,fO] = [t$,¢,t_1$@] = *htp +c

as in (5.9). The magical fact is that, in this case, g = go[t,t '] @ Cc @ Cd is a Kac-Moody Lie
algebra with generators eq,...,en, fo,---, fn, R0y -- -, hn,d and Cartan matrix

AW = (i(h)geijepn> ~ Where ag=—p+35 and ho=—hs+c, (7.1)

where ¢ is as in (5.6 (see [Kacl Thm. 7.4]).
The alcoves are the open connected components of

hr\ U H_qyjs, where H_,yj5 = {z¥ ebr | (z¥,a) = j}.
—a+j6eR],

Under the map in the chambers wC' of the Tits cone X (see and ) become
the alcoves. Each alcove is a fundamental region for the action of W,g on hr given by
and Wo,g acts simply transitively on the set of alcoves (see [Kac, Prop.6.6]). Identify 1 € Wyg
with the fundamental alcove

Ag={z" €br | {zY,0;) >0 forall 0 <i<n}

to make a bijection
Wag «— {alcoves}.
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For example, when gg = sls,

H(x2+6 Hag H—a2+26 H—a2+46

~
| T4
=

/ ” \ 0
_|_
* o, (7.2)
+
> “ @ “ < — Heys
‘“‘ _l_ H<p+2§
_|_
AN A = Hovs
+/\+/ +/ +/\+/ +/ +/\
H7Q1+5 Hﬂtl Ha1+25 HOL1+45
The alcoves are the triangles and the (centres of) hexagons are the elements of QV.
Let w € Wag. Following the discussion in (4.4))-(4.6]), a reduced expression @ = s;, - - - s, is
a walk starting at 1 and ending at w,
1
Hg,
Hp, m
Hg, Hg, Hp
and the points of
Twl = {mil(cl)nalxiz (cz)n; . 'xie(c@)n;{ll | c1,...,c0 € C} (7.3)
are in bijection with labelings of the edges of the walk by complex numbers cq,...,c,. The
elements of R(w) = {B1,...,0¢} are the elements of Rl corresponding to the sequence of

hyperplanes crossed by the walk.
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The labeling of the hyperplanes in ([7.2)) is such that neighboring alcoves have

H’UOC]‘
UAI_)”SJ‘ with va; € RL, if v is closer to 1 than vs;. (7.4)
The periodic orientation (illustrated in ([7.2])) is the orientation of the hyperplanes H, s such
that
(a) 1 is on the positive side of H, for a € Ry,

(b) Hyiks and H, have parallel orientiations.
This orientation is such that
H’Uaj
va; € RY if and only if U:_N__i”sj. (7.5)

Together, (7.4)) and (7.5 provide a powerful combinatorics for analyzing the intersections
U~vI N Iwl. We shall use the first identity in (3.3)), in the form

To(c)ngt = 2 (¢ Haa(—c)hov(c) (main folding law), (7.6)

«

to rewrite the points of Twl given in (7.3) as elements of U~ vI. Suppose that
xil(cl)ni_ll e xié(Cg)ni_el = Ty, (]) -+ - T, () Msb, where b € I, (7.7)

v € Wog and n, = nj_ll . nj_kl if v = s; -5, is a reduced word, and v1,...,v € RrUe so that

Ty, (€h) - xy,(cy) € U™ Th(in the procedure described in (7.8)-(7.10) will compute ¢;,, € C,
Vel v e W and v41 € RY so that

-1 -1 -1
iy (e)ng, - mig(comy, wi(e)ng = 4, (1) -+ 2, ()T, (Coga Il
Keep the notations in ([7.7]). Since bsq(c)n{l € Is;I there are unique ¢ € C and V' € I such
that bx;(c)n; ' = :z:j(é)nj_lb/ and

J
-1 -1 -1
iy (c1)ng, - ‘xié(ce)nig Tj (C)”j = Ty (¢}) - '557@(02)”1)1’553'(@)”]'
~, —1
= 0y () 0y (¢t @ 10
Hvaj
Case 1: If va; € RY, U;\_;”S% then ., (c}) - -mw(c@nvxj(é)nj_lb’ is equal to
C
Ty, () - 4, (€)) Toa, (£E) 10,0 € U~ vs;I N Tws;l.
In this case, v41 = vay, v/ = vsj, and

Hvaj Hvaj

v;’_i”sj becomes U;PUSJ'. (7.8)
E +z
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H’Uaj
Case 2: Ifva; ¢ RY and ¢ £0, % :_EU, then

Loy (1) Ty ()0 (€)1 16 = 0y (€)) -+~ o (€)M (€7 1) Ty (—E) gy ()

where o1 = —va; and 0" = x4, (—E)hyv (E)V'. So
Hvaj Hvaj
_ -+
vsi _ | Fo becomes >V (7.9)
¢ et

re

H’Uaj
Case 3: If voy; ¢ RU andé¢=0, % :_LTJFU, then

Loy (€)) - Ty (Cz)nvwaj (O)n]flb/ = L, (C]) - - (Cle)nvx—aj (O)nj_lb’

=2y, (C]) - 2y, (c'é)wa(O)nvsjb/ € U vsjI NIws;l,

U8 :__L;U becomes % :__|O_+U (7.10)

We have proved the following theorem.

Theorem 7.1. If w € Wag and & = s;, - -+ 54, is a minimal length walk to w define

labeled folded paths p of type W
which end in v

P(a), = { } for v € W,

where a labeled folded path of type W is a sequence of steps of the form

H’L)O&j H’UOli H’UOé]'
Uﬁ—)——;w", =", v :_%”, where the kth step has j = i.
=

Viewing U~vI N Iwl as a subset of G/I, there is a bijection
P (W), «— U vINIwl.

Remark 7.2. The paths in P (@), indicate a decomposition of U~ vl N Iwl into “cells”, where
the cell associated to a nonlabeled path p is the set of points of U~vI N [wl which have the
same underlying nonlabeled path. It would be very interesting to understand, combinatorially,
the closure relations between these cells.
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8 An example

For the group G = SL3(C((t))),

1 ¢ 0 c 0 0 0 10
Ta,(c)=10 1 0 hay(c) = |0 ct o], nmq=[-10 0],
0 0 1 0 0 1 0 01
10 1 0 0 1 0 0
Tay(c) =10 1 ¢ hov(c)=10 ¢ 0 ], ne=10 0 1],
0 0 1 0 0 ¢! 0 -1 0
100 cl 00 00 —t!
Taglc) =10 1 0 hoy(c)=10 1 0], nmg=|(0 1 0
c 0 1 0 0 ¢ t 0 0

Let w = s95150528051805280 and v = $9515082515250 so that

2 0 0 0 -1 0
w=1|0 0 1 and v=|[# 0 0
0 —t2 0 0 0 t2

We shall use Theorem to show that the points of Twl N U vl are
—1 -1 —1 -1 —1 -1 —1 —1 —1
xa2(c1)ng w1(c2)ny xoles)ng  x2(ca)ny xo(cs)ng  x1(ce)ny xol(er)ng  xa(cg)ny xo(co)ng 1,
with ¢q1,...,c9 € C such that
c1=0, co=0, c3=0, ¢4=0, ¢5#0, ¢c6=0, ¢ #0, cg= c7_108. (8.1)

Precisely,

22(0)ny tz1(0)n] tzo(0)ng tre(0)ng Lo (cs)ng to1(0)n Lo (cr)ng tra(cs)ny ao(cs teg)ng *

is equal to ugvgbg, with ug € U™, vg € N, bg € I given by

1 0 0 0O 1 O
U9 = cgl — 05_207_108t 1 0], vg= |-t 0 0
-1 —1,-2 -2
cs et 01 0 0 ¢t (8.2)
et — e tegt —c e R c2e2c2 '
5 5 C7 8 5 C7 €8 5 C7 €8
by = —t cscr+egt —cs—crtest |,
—csle i —egtertest el g ter Yest

so that ug = fL‘faQ(dl)xfw(d2)x—a2—5(d3)l‘—cp—6(d4)l'fa1 (d5)$—a2—25(d6)$—¢—35(d7)$—a1+6(d8)
'Z',a?,gg(dg) with

d1 = d2 = d3 = d4 = 0, d5 = Cgl, d@ = O, d7 = Cglc;l, dg = —65_207_168, dg =0. (83)
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Pictorially, the walk with labels c1, ..., cg

SRESVAVAVAVAS
VAVLVAN, NAAN,
AVAVAVA

VAVLVAN,

the labeled folded path with labels dy, ..., dy.
The step by step computation is as follows:

Step 1: If ¢; = 0 then

To(c1)ny ' = 20, (0)ny ' = ugvyby, with
1 0 0
Ul = T_qay(0), vp=1(0 0 —-1], and by = 1.
01 O
Step 2: If co = 0 then, since v1x1(02)v1_1 = z,(c2),
ulvlblxl(@)nfl = ulxw(@)vml—lbl = ulx_w(O)vlnflbl = UgUobo, with
0 -1 0
ug = u17—4,(0), vy = vlnl_l =(0 0 -1 and by = 1.
1 0 0
Step 3: If c3 = 0 then, since vzxo(c;),)v;l = Tayto(—C3),
UQUQbQI'O(C;g)TLal = u2$a2+5(—63)vgnalb2 = uzw_a2_5(0)v2nalb2 = ugvsbs, with
0 -1 0
Uz = U2T—_q,-5(0), vy = UQTLal =1t 0 0], and bg =1.
0 o ¢!
Step 4: If ¢4 = 0 then, since v3m2(cs)vy ' = Tpi5(—ca),
u3v3b3x2(04)n2_1 = u3$@+5(—04)v3n2_1b3 = U3x,¢,5(0)v3n2_163 = ugV4by, with
0 0 1
ug = ugr_,_5(0), vy = v3n2_1 =1t 0 O and by = 1.
0ttt o0

Step 5: If ¢5 # 0 then by the folding law and the fact that vz _q, (05_1)1)4_1 =T_q, (05_1),

U4U4b4$0(65)n61 = U4V4T_q, (cgl)xao(—05)hag(05)b4 = U4x_a1(cg1)v4b5 = usvsbs,
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where

-1
cs 0 0
Uy = ULT —qy (Cgl), V5 = V4, and b5 = xao(_cfl)hag (C5)b4 = 0 1 0
—t 0 c5

Step 6: If ¢ 'cg = 0 (so cg = 0) then

u5v5b5m1(cﬁ)n1_1 = U5v5$1(c5_106)n1_1bg = u5m,a2,25(0)v5nf1bg = ugugbg,

with
0 0 1 1 0 0
U = UsT—qy—25(0), v6 = v5nf1 =10 -t 0 and b = by = 0 05_1 0
=1 0 0 —cgt t e

so that bsz1(ce)ny * = x1(c5 ' ce)ny 'b%.

Step 7: If csc7 # 0 then, since v6x,a0(c)vg1 =x_,25(c),

uguebemo(cr)ng ' = usvsro(cser)ng by = ugveT —ag (5 ' ¢7 ) ay (—Cser)hay (cser)b

1 -1
= ueT_p—25(c5 5 )vsbr = urvrby,

where
U7 = UeT_y—as(cs cr ), v7 = Ve, and
cs —1 0 07_1 —cglc;l 0
=10 cgl 0 and by = :an(—0507)hag(0567)b% = 0 cgl 0 ],
0 0 1 —C5t t C5C7

so that b6x0(07)n61 = x0(0507)n51b’6.

1

Step 8: No restrictions on c;?c; 'es. Since v7zq,(c)v; ! = 2_o,45(—¢),

-1 -2 1 —1yy -2 —1 —1p/
urv7braa(cg)ng - = urvra(cy "¢ cg)ng by = urx_o, 45(—c5 "¢ cg)urng by = ugugbs,

with
0 10
-2 —1 -1
Ug = UTT_q,+6(—C5 "C7 " C3), vg=uwvm, = 0 0 t], and
t=1 0 0
07_1 —cglc;ICS cglc;l
bg = b/7 = —cst cscr + cst —t ,

1

-1 -1 -2 —1 2 - —2
—C5 Cpcgt  cg ey cgt eyt —Cy

C;ICgt

so that b7x2(08)n2_1 = x2(0g267_168)n2_1b/7.

) -1 1. _ _ -1
Step 9: If ¢ "creg — ¢ "eg = 0 (so cg = ¢ "cg) then
b -1 _ —1 -1 —lb/ _ 0 —lb/ _ b
ugvgbgwo(co)ny = ugugxo(cy crcg — ¢5 cg)ng by = us_n,—35(0)vgng " by = ugvgbg

with ug, vg and by as in ({8.2]).
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