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1. Introduction

This paper provides a unified approach to results on representations of affine Hecke alge-
bras, cyclotomic Hecke algebras, affine BMW algebras, cyclotomic BMW algebras, Markov traces,
Jacobi-Trudi type identities, dual pairs [Ze|, and link invariants [Tu2]. The key observation in the
genesis of this paper was that the technical tools used to obtain the results in Orellana [Or] and
Suzuki [Su], two a priori unrelated papers, are really the same. Here we develop this method and
explain how to apply it to obtain results similar to those in [Or] and [Su] in more general settings.
Some specific new results which are obtained are the following:

(a) A generalization of the results on Markov traces obtained by Orellana [Or] to centralizer
algebras coming from quantum groups of all Lie types.

(b) A generalization of the results of Suzuki [Su] to show that Kazhdan-Lusztig polynomials
of all finite Weyl groups occur as decomposition numbers in the representation theory of
affine braid groups of type A,

(c) A generalization of the functors used by Zelevinsky [Ze] to representations of affine braid
groups of type A,

(d) We define the affine BMW algebra (Birman-Murakami-Wenzl) and show that it has a
representation theory analogous to that of affine Hecke algebras. In particular there are
“standard modules” for these algebras which have composition series where multiplicities

of the factors are given by Kazhdan-Lusztig polynomials for Weyl groups of types A,B,and
C.

(e) We generalize the results of Leduc and Ram [LR] to affine centralizer algebras.

* Research supported in part by National Science Foundation grant DMS-9971099, the National Security Agency and
EPSRC grant GR K99015.
This paper is a slightly revised version of a preprint of 2001. We thank F. Goodman, A. Henderson and an anonymous

referee for their very helpful comments on the original preprint.
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Let Upg be the Drinfel’d-Jimbo quantum group associated to a finite dimensional complex
semisimple Lie algebra g. If M is a (possibly infinite dimensional) U g-module in the category O
and V is a finite dimensional Upg-module then we show that the affine braid group B, acts on the
Ung-module M ® V&%, Fix V and define

Fr(M) = the vector space of highest weight vectors
A N of weight \ in M ® V&F, ‘

Then F} is a functor from Upg modules in category O to finite dimensional modules for the affine
braid group Bj, which takes

(1) finite dimensional Ujg modules to “calibrated” By, modules,
(2) Verma modules to “standard” modules, and
(3) under appropriate conditions, irreducible Up,g modules to irreducible B, modules.

Applying the functor F to a Jantzen filtration of Verma modules of U,g provides a “Jantzen
filtration” of the standard modules of By and shows that the irreducible Bj, modules appear in
a composition series of the standard module with multiplicities given by the Kazhdan-Lusztig
polynomials of the Weyl group of g. Though B, is always the affine braid group of type A, the
Weyl group of g is not usually of type A.

Applying the functor F) to the BGG resolution of an irreducible highest weight module pro-
vides a BGG resolution for the corresponding Bi-modules and a corresponding “Jacobi-Trudi”
identity for the characters of B modules. Once again, it is interesting to note that, though By
is the affine braid group of type A, it is the Weyl group of a different type which appears in this
Jacobi-Trudi identity.

Using the general formulation for constructing Markov traces on braid groups, given for ex-
ample in [Tul], we obtain a Markov trace on the affine braid group B, for every choice of g and
Ung modules M and V.

(a) If g=sl,41, M = L(0) and V = L(wq) this gives the Markov trace on the Hecke algebra

studied in [Jol] and [Wz].

(b) If g =sly, M = L(0) and V = L(w;) this gives the Markov trace on the Temperley-Lieb

algebra used by Jones [Jo2].

(c) If g =sl,41, M = L(kwy) with k and ¢ large and n very large, and V = L(w;) this gives

the Markov traces on the Hecke algebra of type B studied by [GL], [Lb], [Ic] and [Or].

(d) If g =sl,41, M = L(X\), where X is “large”, and V' = L(w) this gives the Markov traces

on the cyclotomic Hecke algebras introduced by Lambropoulou [Lb] and studied in [GIM].

(e) If g = so,, or g = sp,,, M = L(0) and V = L(w;) this gives the Markov traces used to

construct Kauffman polynomials.

For general g, general V', and M = L(0), this mechanism gives the traces necessary to compute the
Reshetikhin-Turaev link invariants [RT]. In some sense, this paper is a study of the representation
theory behind the generalization of the Reshetikhin-Turaev method given in [Tu2].

In the final section of this paper we describe precisely the combinatorics of the representations
Fy\(M) in the cases when g is type 4, B,,C, or D, and V is the fundamental representation.
In these cases the representations can be constructed with partitions, standard tableaux, up-down
tableaux, multisegments and the combinatorics of Young diagrams. In particular, in type A,
the functor F)\ naturally constructs the standard modules and irreducible modules of affine Hecke
algebras of type A in terms of multisegments (a classification originally obtained by Zelevinsky [Ze2]
by different methods). We then specify explicitly the correspondence between the decomposition
numbers of the affine Hecke algebra and Kazhdan-Lusztig polynomials for the symmetric group.
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2. Preliminaries on quantum groups

Let Upg be the Drinfel’d-Jimbo quantum group corresponding to a finite dimensional complex
semisimple Lie algebra g. Let us fix some notations. In particular, fix a triangular decomposition

g=n"@hont, nt=CPe., bT=hon’
a>0

and let W be the Weyl group of g. Let (,) be the usual inner product on h* so that, if « is a root,
the corresponding reflection s, in W is given by

1
sad = A — (N, a¥)a, where o' = ——. The element p = 5 E o'
a>0

is often viewed as an element of ) by using the form (,) to identify h and h*. We shall use the
conventions for quantum groups as in [Dr| and [LR] so that

q=e? h C Ung, and Upg = Ug|[h]], as algebras.
The quantum group has a triangular decomposition corresponding to that of g,

Ug=Umn" @Uph@Upnt  and  Upb™ =Uph @ Upn™.

The category O
If M is a Upg module and A\ € h* the \ weight space of M is

My ={m e M | am = X(a)m, for all a € h}.

The category O is the category of Upg modules M such that
(a) M= @,\ef)* M,
(b) For all m € M, dim(Upntm) is finite,
(c) M is finitely generated as a Upg module.
For € b* let
M (u) be the Verma module of highest weight u, and let
L(p) be the irreducible module of highest weight .
The irreducible module L(u) is the quotient of M (u) by a maximal proper submodule and M (u) =

Ung @y, e+ Cvf where Cvf is the one dimensional U,b* module spanned by a vector v, such that

avt = p(a)v for a € h and Upntof = 0. Every module M € O has a finite composition series
with factors L(u), € h*. Each of the sets

{ILV][Aeb™t  and  {[MA)] | Aebh”}
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(where [M] denotes the isomorphism class of the module M) are bases of the Grothendieck group
of the category O.

If M is a Upg module generated by a highest weight vector of weight A (i.e., a vector vt such
that av™ = A(a)v™ for a € h and UpnTot = 0) then any element of the center Z(Uyg) acts on M
by a constant,

zm = xMNz)m, for z € Z(Ung), m € M, x*(z) € C.

For each Upg module M € O let

n
MW = @ MR‘&W where @Q = ZZO@,
req i=1

ai,...,qp are the simple roots and
M)[fiy = {m € My, | there is k € Z~¢ such that (z — x*(2))*m = 0 for all z € Z(Ung)}.

Then
=
A

where the sum is over all integrally dominant weights A € h* i.e., X € h* such that (A\+p, V) & Z-g
for all « € R*. To summarize, there is a decomposition of the category O,

0=oW, (2.1)
A

where the sum is over all integrally dominant weights A € h* and O™ is the full subcategory of
modules M € O such that M = MM, The Grothendieck group of the category O has bases

(L] [ neW or} and  {[M(u)] | pe W oA}, (2.2)
where the integral Weyl group corresponding to A is
WA= (5o | A p,aVyeZ) and wol=wA+p)—p,  weW,\Aeh*. (2.3)
defines the dot action of W on b*.

Jantzen filtrations

Following the notations for the quantum group used in [LR, §2], let b, Xi,...,X, and
Y1, ..., Y, be the standard generators of the quantum group Upg which satisfy the quantum Serre
relations. The Cartan involution 6: Upg — Upg is the algebra anti-involution defined by

0(X;)=Y; 0(Y:) = X,, and 0(a) =a, forach. (2.4)

The Cartan involution 6 is a coalgebra homomomorphism. A contravariant form on a Upg module
M is a symmetric bilinear form (,): M x M — C such that

(umy, mo) = (mq,0(u)mso),u € Upg, my,mo € M.
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Fix A € h* and § € h* such that A4td is integrally dominant for all small positive real numbers
t. Consider ¢ as an indeterminate and consider the Verma module

M\ +t6) = Unglt] @u, o+ Crres

as the module for Uy g[t] = C[t] @c Upg generated by a vector v+ such that avt = (A+¢6)(a)v™ for
a € h and Upnt[tJvt = 0. There is a unique contravariant form (, );: M(A+6) x M(A+t6) — C[¢]
such that (vt vT), = 1. Define

M\ +t6)(j) = {m € M(\+t5) | (m,n), € V/C[t] for all n € M(\ + 5)}.
The “specialization of M (A +t0)(j) at t =07 is
M(M\)Y) = image of M(\+t8)(j) in M(X + t6) @cq C[t] /tC[t]
and the Jantzen filtration of M()) is
M) =MNO > MNP D (2.5)

By [Jz, Theorem 5.3|, the Jantzen filtration is a filtration of M (X) by Upg modules, the module
M(M\)® is a maximal proper submodule of M(\) and each quotient M (X\)® /M (X\)(+Y) has a
nondegenerate contravariant form. It is known [Bb] that the Jantzen filtration does not depend on
the choice of 6. Tt is a deep theorem [BB] that the quotients M (X\)® /M (X)+1) are semisimple and
that if w € W# and y € W# are maximal length in their cosets wW,, and yW,,,, respectively,
then the Kazhdan-Lusztig polynomial for W* is

Y [M(wo ) /M(wo m)IH : Ly o )]y (W=D = P, (v), (2.6)

720

where / is the length function on W* and [M (w o p)) /M (wo p)U+ : L(you)] is the multiplicity
of the simple module L(y o u1) in the jth factor of the Jantzen filtration of M(\).

The BGG resolution

Not all simple modules L(\) in the category O have a BGG resolution. The general form of
the BGG resolution given by Gabber and Joseph [GJ] is as follows.
Let p € h* be such that —(u+ p) is dominant and regular and let W/ be a parabolic subgroup
of the integral Weyl group W*. Let wq be the longest element of W/ and fix v = wq o pu. Define a
resolution
0—>Cg(w0)—>"‘—>02£>01LCQ—>L(1/)—>0 (2.7)

of the simple module L(v) by Verma modules by setting

C; = @ M(wov),

{(w)=j

where the sum is over all w € W/ of length j, and defining the map

)

. €y wl ifv—w
d;:C; — C;_1, by the matrix (d; = VW EV,W ot
T i Y ()o {0, otherwise,
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where v — w means that there is a (not necessarily simple) root a such that w = s,v and
l(w) = £(v) — 1, the maps ¢, ,, are fixed choices of inclusions
tyw: M(vov)— M(wov), and Evw = £1,
are fixed choices of signs such that
EuwEow = —Euw Ev’ w if u—v—w, u—v —-w and v#v.

Gabber and Joseph [GJ] prove that the sequence (2.7) is exact in this general setting. See [BGG]|
and [Dx,7.8.14] for the original form of the BGG resolution. From the exactness of (2.7) it follows
that if —(u + p) is dominant and regular then, in the Grothendieck group of the category O,

(L)) = Y (1) [M(wow)), (2.8)
weWwt

where v = wg o u and wq is the longest element of Wff .

RN matrices and the quantum Casimir C)y

Let Upg be the Drinfeld-Jimbo quantum group corresponding to a finite dimensional complex
semisimple Lie algebra g. There is an invertible element R = »_ a; ® b; in (a suitable completion
of) Upg ® Upg such that, for any two Upg modules M and N, the map

] M®N
Ryn: M®N —  NoM N
men +— me@aim R

N®M

is a Upg module isomorphism. There is also a quantum Casimir element e~"Pu in the center of
Unrg and, for a Upg module M we define

M
m +— (e "Pu)m I M
M

In order to be consistent with the graphical calculus these operators should be written on the
right. The elements R and e~"Pu satisfy relations (see [LR, (2.1-2.12)]) which imply that, for Uy,g
modules M, N, P and a Upg module isomorphism 7p;: M — M,

M&N M@ N
L. -
N&M N®M

Run(idy ® Tar) = (Tar @ idy) Rasrw,

v (N P) M®N®P (M N) P M®N P
® (N® ®N) ®
Ll S
'Y ( . & h (2.10)
(N®P) @ M VIR P®(M&N) VAR
NoP@M PoMeN

RM,N®P = (Ryn ®idp)(idy ® Ryp) RM@NJD = (idy ® Ryp)(Ryp ® idy),
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Cuen = (RunRya) ™ (Cu @ On). (2.11)
The relations (2.9) and (2.10) together imply the braid relation
MNP MN®P

-

PoNo®M PeN®@M
(Ryn ®idp)(idy ® Rayrp)(Ryp ®idar) = (idy ® Ryp)(Rup ®@idy)(idp ® Ruw),
If M is a Upg module generated by a highest weight vector v™ of weight A then, by [Dr, Prop. 3.2],
Car = ¢~ M 20id . (2.13)

Note that (A, A+ 2p) = (A + p, A\ + p) — (p, p) are the eigenvalues of the classical Casimir operator
[Dx, 7.8.5]. If M is a finite dimensional Uyg module then M is a direct sum of the irreducible

modules L(A\), A € Pt and
Cu= P ¢ 2P,

AepP+

where Py: M — M is the projection onto M in M. From the relation (%.11) it follows that if
M = L(u), N = L(v) are finite dimensional irreducible Uyg modules then Ry Ryas acts on the

A isotypic component L()\)@CQV of the decomposition
L(p) ® L(v) = @ L()\)@Cﬁv by the constant g AT2e) =t 20) = (v +20) (2.14)
A
Suppose that M and N are Up,g modules with contravariant forms (, )y, and (, ) v, respectively.
Since the Cartan involution is a coalgebra homomorphism the form on M ® N defined by
(m1 ® ny,ma ®ng) = (my,ma)ar(n1,n2) N, for mi,mo € M, n1,n9 € N, (2.15)

is also contravariant. If 6 is the Cartan involution defined in (2.4) then a formula of Drinfeld [Dr,
Prop. 4.2] states

ORO)(R)=> b a;,
from which it follows that i
((m1 ® n1)Rarw, na @ ma) = Z((bi ® a;)(n1 @ m1),nz @ mo)
= i% ®mu, (0(b;) © 0(ai))(n2 @ my))
= iml ® m1, (a; ® b;)(n2 ® ma))

= Z<m1 ® ny, bima ® a;ng).

Thus
<(m1 & nl)RMN,ng & TTL2> = <7TL1 X ni, (TZQ & TTLQ)RNM>. (216)
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3. Affine braid group representations and the functors F)

There are three common ways of depicting affine braids [Cr], [GL], [Jo3]:
(a) As braids in a (slightly thickened) cylinder,

(b) As braids in a (slightly thickened) annulus,

(c) As braids with a flagpole.

See Figure 1. The multiplication is by placing one cylinder on top of another, placing one annulus
inside another, or placing one flagpole braid on top of another. These are equivalent formulations:
an annulus can be made into a cylinder by turning up the edges, and a cylindrical braid can be
made into a flagpole braid by putting a flagpole down the middle of the cylinder and pushing the
pole over to the left so that the strings begin and end to its right.

The affine braid group is the group By, formed by the affine braids with k strands. The affine
braid group By can be presented by generators Ty, Tb, . .., Ts_1 and X©

=KL = -2 I e

with relations
(3.2a) T;T; = 15T, if [i — j| > 1,
(3.2b) T;T; 31Ty = Ty T3 Ty 44, for1 <i<k-—2,
(3.2¢) X1 X2 Ty =Ty X2 T X1,
(3.2d) X91T;, =T, X, for2<i<k-1.
Define
X6 =T, Ty o - ToTW XTIy T;_q, 1<t <E. (3.3)

By drawing pictures of the corresponding affine braids it is easy to check that the X*¢ all commute
with each other and so X = (X% | 1 < i < k) is an abelian subgroup of By. Let L = Z* be the
free abelian group generated by €1,...,€,. Then

L={M\e1+ -+ ex | N€EZ} and X={X*|NAeL} (3.4)
where XA = (Xe1)M(Xe2)A2 ... (X)) % for \ € L.

The By, module M ® V®k

Let Upg be the Drinfeld-Jimbo quantum group associated to a finite dimensional complex
semisimple Lie algebra g. Let M be a Upg-module in the category O and let V' be a finite
dimensional Uy,g module. Define R;, 1 <i <k —1, and RZ in Endy, (M ® V&) by

R =idy ® id{‘?“‘” ® Ryv ® idg(k_i_l) and  R2 = (RyvRvy)® idg(k_l).
The following proposition is well known (see [Su2, Prop. B.2], [LR, Prop. 2.19], or [Re]).

Proposition 3.5. The map defined by

®: B, — Endy, (M V)

X — Rg,
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makes M ® V®F into a right B, module.

Proof. 1t is necessary to show that

(a) RiRj = R;R;, if [o —j] > 1,

(b) R2R; = R;R3, i>2,

(¢) RiRiz1R; = Rip1RiRi1, 1 <i<k—2,

(d) F2Ry 3Ry — Ry F2R, 2.
The relations (a) and (b) follow immediately from the definitions of R; and R3 and (c) is a particular
case of the braid relation (2.12). The relation (d) is also a consequence of the braid relation:

RERIRZR, = (Ryv Ry ®@1d)(id ® Ryv)(Ryy Ry ®@1id)(id ® Ryy)
= (Ryy ®1id) (id ® Ryy)(Ryy ®1d)(id ® Ry a) (Rya ®@1d)(id @ Ryy)

= (id® Ryv)(Ryv ®id)(id ® Ryy) (Ryv ®id)(id ® Ryar)(Ry v @ id)

=(d® va)(RMV RVM ®id)(id ® va)(RMV RVM ®id)
_RBRRE,

R@ﬁmﬁﬁ%%m%m% "
r)&&g

A Bj, module N is calibrated if the abelian group X defined in (3.4) acts semisimply on N, i.e.
if NV has a basis of simultaneous eigenvectors for the action of Xt ... X¢k,

or equivalently,

Proposition 3.6. If M and V are finite dimensional Uy g modules then the By, module M ®@ V®*
defined in Proposition 3.5 is calibrated.

Proof. Let P be the set of dominant integral weights. Since M and V are finite dimensional the
Upg-module M ® V! is semisimple for every 1 < i < k and

MeVv® = Move)N= g5 L()o™,
AepP+t AepP+

where my, € Z>o and (M @ V)N 2= [(\)®™ Given a basis of M ® V¥~ which respects the
decomposition M @ V®E-1) = D, (M Ve=)[H one can construct a basis of M ® V®* which
respects the decomposition

MoV = (MaVei-)gv = @) ((MeVei-D)ig v,

A, sV

Since (M ® Vei-)lH o VIV C (M @ V@) this new basis respects the decomposition
M@ Ve =@, (M V). This procedure produces, inductively, a basis B of M ® V®* which
respects the decompositions

M@V =(Ma V) e Vet = (BM e V)N g yek-i,
A
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for all 0 < i < k. The central element e~ "7y in Uy, g acts on (M @V ®)N by the constant g~ (MA+20),
From (2.10), (2.11) and (2.14) it follows that X< acts on M ® V®* by

Ri*l c. Rle-Rl e Ri*l = RM®V®(7;71),VRV,M®V®(7;71) ® ld%—(k_l)
= (Cugves- & CV)C]\}1®V®1_ ® idg(k_i)
- Z ¢ AAF20) = (- 20) — (v,v+2p) Pﬁ\y @ id%(k‘i)

A,V

where P): M ®idy’ — M ®id{’ is the projection onto (M ® V-1 @ VI Thus X=
acts diagonally on the basis B. |

Define an anti-involution on By, by

OT)=T, and O(X)) =X,

for1 <i<k—1and X € L. A contravariant form on a lg’k module N is a symmetric bilinear form
(,): N x N — C such that

(bny,na) = (ny1,0(b)ng) for ny,ny € N, b € By.

Suppose M is a Upg-module in the category O and V' is a finite dimensional Uy g module. Let (,),,
and (,), be Upg-contravariant forms on M and V respectively. By (2.16),

(01 @ v2) Ryv, 0] @ vg) = (01 @ g, (v] @ vh) Ryv)
for vy, vq,v],vh € V, and
(m® U)RMVRVM, m @v') = ((m® v)RMV, (m' @ v')RMV) =(m®uv, (m v/)RMVRVM>
for m,m’ € M, v,v' € V. Thus it follows that the form (,) on M ® V®* given by
(@ ® v @ @ vf) = (), (00,0, (0 Wty (3)
for m,m’ € M, v;,v, € Vis a By contravariant form on the Bj module M @ V®F.

The functor F

Fix a finite dimensional U,g module V' and an integrally dominant weight A in h*. Let Oy, be
the category of finite dimensional By modules and define a functor

F - O — Ok (3 8)
M +— Homy,a(M()\),M @ V&), '
Since an element of Homy, o(M(X), M @ V®*) is determined by the image of a generating highest
weight vector of M (\), the space F)\(M) can be identified with the vector space of highest weight
vectors of weight A in M ® V®k, If X is integrally dominant the highest possible weight of (M ®
V®F)Alis X, Thus, viewing F) (M) as the space of highest weight vectors of weight A in M @ V&,

Homy, o (M(A), M @ VE*) 2 (M @ VER)N), = (

M @ VO
n (Mo Ver) )|
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where we use the notation
(M V) =) "Vi(Ma Ve, (3.9)

where the Y; are the Chevalley generators of n~. In the case of Ug-modules, the notation n= (M ®
V@k) is self explanatory—the notation in (3.9) is simply a way to define the same object for the
quantum group Upg.

The functor F\ is the composition of two functors: the functor - ® V®* and the functor
Homy (M (), -). The first is exact since V®F is finite dimensional and the second is exact because
when A is integrally dominant M () is projective, see [Jz, p. 72]. Thus

if A is integrally dominant, the functor F) is exact. (3.10)

4. The Bj;, modules M*# and £*
Let A be integrally dominant and let u € h*. Define B;, modules

MME = F\(M(p))  and  LM* = Fy(L(p)). (4.1)
The following lemma is the main tool for studying the structure of these B modules.

Lemma 4.2. ([Jz, Theorem 2.2], [Dx, Lemma 7.6.14]) Let E be a finite dimensional Uj,g module
and let {e;} be a basis of E consisting of weight vectors ordered so that i < j if wt(e;) < wt(e;).
Suppose M is a Upg module generated by a highest weight vector 11:[ of weight u. Set

M, = Z Uhn_(v:[ &® ej).
Jjzt
Then
(a) M®E = M, D My D --- is a filtration of U,g modules such that M; /M, is 0 or is a highest
weight module of highest weight pu + wt(e;).
(b) If M = M () then M;/M;11 = M (u+ wt(e;)).

The braid group By, is the subgroup of Bj, generated by Ti,...,Ty_1. By restriction, both
MM# and VOF = L(0) ® V®* are B;, modules.

There is a unique Uy g contravariant form (, ) on the Verma module M (w o u) determined by
(Uihos Vibop) e = 1 where vf,  is the generating highest weight vector of M(w o ). As in (2.15),
this form together with a nondegenerate Uy, g contravariant form (, )y on V' gives Uy, g contravariant
forms (,)yer and (,) on VE¥ and M (w o u) ® VEk, respectively.

With these notations at hand we use Lemma 4.2 to prove the fundamental facts about the B
modules M**# and £M# defined in (4.1).

Proposition 4.3. Let A, i be integrally dominant weights and w € WH.

(a) As By, modules, M Wor = (V@k),

(b) M wor o2 MAYOR GETW Wy, = Was pyy Wi p.

(¢) Use the same notation (,) for the Uyg contravariant form (,) on M(w o pu) @ V& and the By,
contravariant form on M?* (W°1) obtained by restriction of {,) to the subspace (M(w o p) ®
VORI Then

MM (wop)

AJwop o~y
T E
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(d) Assume w € W* is maximal length in the coset wW,,,, in W, If L (Wol) o£( then
(1) A\ —wop is a weight of VEF,
(2) w is maximal length in W4 ,wW,, 1 ,.

(e) If u is a dominant integral weight then

LN B {v € (V®k),\,u | Xi<“+p’aiv>v =0,foralll1<i< n} )

Proof. (a) Let v}, be the generating highest weight vector of M(w o p) and, for n € V&F let

WO
pr(v,,, ®n) be the image of v,f,, ® n in (M @ VE¥)/n~ (M ® VE*). Then, since A is integrally
dominant, Lemma 4.2 shows that

(V®k)>\7wou N M)\/(wou)
n —  pr(vt,, ®n)

wop

(4.4)

is a vector space isomorphism. This is a Bi-module isomorphism since the By action on M (w o

1) © VP commutes with n~ and fixes v;f,,,.

(b) By (a), A\ —wou € P and so W» = W¥, It is sufficient to show that M/ wer = pA/(siwop)
for all simple reflections of W* such that s; € Wy, and s;w > w. Applying the exact functor F)
to the Verma module inclusion

M(Siw o ,u) — M(w o H) gives MA/SNHOH N ./\/l)\/u)ou7

an inclusion of Bg-modules. Since s;(A — w o p) = s;(A + p) — siw(p + p) = A+ p — siw(p + p) =
A — (sjw) o p there is a (vector space) isomorphism of weight spaces

(V®)>\7woﬂ = V®k

A—s;wop”

(This isomorphism can be realized by Lusztig’s braid group action [CP, §8.1-8.2] T;: (VE*) 5 _ 0, —
(VER) g, (A—wop))- Thus, by part (a), the By-module inclusion MA/siwor ey ApA/ WO g an isomor-
phism.

(c) Use the notations for the bilinear forms on M (w o u) and V®¥ as given in the paragraph before
the statement of the proposition. Let {b;} be an orthonormal basis of V®* with respect to (, )y ex.
If r € rad(, ) ps then

(r@ab,s@b) = (r,s)pbb)yer =0, for all s € M(w o u), b,b' € VO,

and so (rad(,)as) ® V®* C rad(,). Conversely, if r; € M(w o i) such that > r; ® b; € rad(,) then

0= <Zm ®b;,s@b;) = Z(ri,s>M6ij = (rs, s), for all s € M(w o p).
So 7; € rad(, )ps and thus rad(,) C rad(, ) ® V®*. By the Ug contravariance of (,)

(M(wop) @ VMR L (M(wop) @ VR

for integrally dominant weights A, p with A # p. Thus

(A]

rad(,) = (rad(,)n ® V®k)/\ ’
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where (,) is the restriction of the form on M (w o u) ® V®* to (M(wo p) ® V®k)[>\>‘]. Thus

(M(wopu) @ VIR (M(wop) @ Vel

rad(, ) (rad(, )pr @ VEK)

M(w o p) k A k[
rad<7>M A

where the isomorphism is a consequence of the fact that, because A is an integrally dominant

weight, the functor (- ® V®k)E\>‘} is exact (Prop. 3.9).

(d) If X\ — w o p is not a weight of V®* then, by part (a), M*®°# = 0. Since the functor F is
exact and L(w o y) is a quotient of M (w o p), £ ™°F is a quotient of Mok, Thus MY wor = ()
implies £ WM = ().

Assume that w € W* is not the longest element of the double coset Wy, wW, , € WH.
Then there is a positive root o > 0 such that s, € Wy, and sqw > w. Since squwW, 4, # wW,4,

there is an inclusion of Verma modules M (sqw o pu) € M(w o u) and Fy(L(w o p)) is a quotient of
Fx(M(wo p))/Fx(M(sqw o u)). On the other hand, by part (b),

MM won F(M(w o p))
A/ Sqwop A A/wopu — A K =
M o~ M , a,nd SO M)\/sawou F)\(M(Sawou)) O

Thus F)\(L(wo u)) = 0.
(e) When p is a dominant integral weight

rad(,)ar = Upn (Y7000 [ 1<i<m) = 3 Um0,

see [Dx, 7.2.7]. Thus, by (c) and the vector space isomorphism (4.4) it follows that, as vector
spaces,

%
L = ((span—{pr(v;r ®@n)|ne V®k})/(span—{pr(Yi<“+p’a" >v,‘f ®n)|ne V®k}))>\.
For any k > 0, there is a nonzero constant ¢ such that pr(Y;kHvlf ®n)=c- pr(Y,;(Yikvf[ ®n) —
Yi’“v:[ ®Yin)=—c plr(Yi’“v;r ®Y;n), and so, by induction, plr(Y;-’“le;r ®n) = & pr(v;® YFtin)
for some constant ¢ # 0. Thus £* is isomorphic to the vector space

<V®k/(z Y(u+p7a5>v®k>> ~ (Z Y(#"‘P,aiv)v'@k)
2 A—p 7

1

A—p
Ifbe (YZ»WJ”)’%V)V®k)L then the Upg contravariance of (, )y er gives that

0= (Y rein by = (n, X000 for all n € V&,

VOk

Thus, by the nondegeneracy of (, )y e,

4

i A—p
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Remark 4.6. Proposition 4.3d gives a necessary condition on A/w o p for the Bj,-module £/ wor
to be nonzero. The following will be useful for analyzing the combinatorics of the examples in
Section 6. If P denotes the weight lattice ) is an integrally dominant then the action of Wy, on
A — P by the dot action has fundamental domain

-

p = HEA—P| (i + p, ) € Z<g for all a > 0 such that (A + p,a") = 0}.

and the following are equivalent:

(a) pe C)\+p>
(b) = w*ov with v integrally dominant and w* € W* longest in the coset Wy, ,w* in W,
(c) p= wg‘ o fi with wg € W longest in the double coset W,\+pw3Wu+p in W,

In the classical case, when g is type A, and V = L(w;) is the n + 1 dimensional fundamental
representation the Bg-module £2/*°H is a simple Bj-module whenever it is nonzero (see [Su]). As
the following Proposition shows, this is a very special phenomenon.

Proposition 4.7. Assume that V = L(v) for a dominant integral weight v. If the Bj,-module
LM# s irreducible (or 0) for all k, all dominant integral weights u, and all integrally dominant
weights \ then

(a) g is type A,,, By, C, or Go and V = L(w), and
(b) the action of the subgroup By, of By generates Endy, 4(V®*).

Proof. (a) If p is large dominant integral weight (for example, we may take u = np, n >> 0) then,
as a Upg-module,

L(p)®V = P L(p + wt(b)),
b

where the sum is over a basis of V' consisting of weight vectors and wt(b) is the weight of the vector
b. The group By is generated by the element X! which acts on a summand L(\) in L(p)®V by the
constant ¢{MAT20) = {nd2p)=(vv+20)  Then Fy(L(p)) is the L(\)-isotypic component of L(p) @ V
and these are simple B; modules (for the various A) only if all the values

(14 wt(b), p+ wt(b) + 2p) — (p, u+ 2p) — (v, v + 2p)

=2(u+ p,wt(b)) + (wt(b), wt(b)) — (v, v + 2p), (48)

as b ranges over a weight basis of V', are distinct. It follows that all weight spaces of V must be
one dimensional. This means that

(a) gis type An, Bn, Cpn, Dy, Eg, E7 or G and V = L(wy), or

(b) gis type A, and V = L(kw;) or V = (kw,,) for some k, or

(c) gis type B, and V = L(w,,), or

(d) gistype D, and V = L(w,,—1) or V = L(wy,).
Most of the weights of these representations lie in a single W-orbit. If v and ' are two distinct
weights of V' which are in the same W-orbit then (v,v) = (v/,/). If p = np with n >> 0 then the
condition that all the values in (4.9) be distinct forces that

2(n+1)(p,7) =2(u+p,7) # 2u+p,9)=2(n+1)(p,7).

Writing vy =v — >, cio; and v = v — ). cia; with ¢, ¢; € Zsq the last equation becomes

2(n+1)'Zci £2(n+1)-> d.

(2
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Finally, an easy case by case check verifies that the only choices of V' in (a-d) above which satisfy
this last condition for all weights in the W-orbit of the highest weight are those listed in the
statement of the proposition.

(b) Let Zj = Endy, 4(V®*). As a (Uyg, Zk)-bimodule

Vek 2 (B I()) ® 2,
A

where Z,;\ is an irreducible Zi-module and the sum is over all dominant integral weights for which
the irreducible Upg-module L(\) appears in V®*. By restriction Z} is an Bi-module and this is
the By-module Fy(L(0)) which, by assumption, is simple. Since L(0) is the trivial module X<
acts on F)\(L(0)) by the identity and so F»(L(0)) is simple as a Bi-module. Thus the simple
Z-modules in V&F coincide exactly with the simple Bi-modules in V®* and it follows that B
generates Zj, = Endy, 4(VEF). I

Jantzen filtrations for affine braid group representations

Applying the functor Fj to the Jantzen filtration of M () produces a filtration of M,
MM = Fy\(M () = FA(M () @) 2 Fx(M(n)V) 2 -+ (4.9)

An argument of Suzuki [Su, Thm. 4.3.5] shows that this filtration can be obtained directly from
the By-contravariant form (,); on

MO — (M (1 + 28)) = (M (4 9) @ VR

which is the restriction of the Ujg contravariant form (,); on (M (u + t6) ® VEF), see (2.5) and
(3.7). To do this define

MATE/F 5y — Ly @ MOAFO/ W) |y ), € IC[t] for all n € MAFH/ntoy

and
®)
(MW) " = image of MAHO/BH () in MO/t ®cqy Clt]/tCl]

to obtain a filtration

MM — (MA/M)(O) ) (MA/#)(D D... (4.10)

such that the quotients (M’\/ ”)(j))/ (M’\/ “)(j+1)) carry nondegenerate B, contravariant forms.

Since, for different ), the subspaces (M (u +t6) ® V& )k\ﬁ?}

to the Upg contravariant form (,); on (M (u + t6) @ V&),

are mutually orthogonal with respect

. 1 8]/ . .
(M +8)(5) @ VIR C (M +6) @ VIS () = MO+ id) )

On the other hand, if u € (M(u—i—té)@V@k)E\)‘;?] (j) then write u = ), a; ®b; where a; € M (pu+16)
and b; is an orthonormal basis of V®*. Then, for all v € M (u+t6), and all k, (ax,v); = (u, v®by); €
t/C[t] and so u € (M (u+ t0)(j) ® V®k)[)ﬁ:§?]. So

Fyyoo(M(p+ té))(j) — MOFE8)/ (tt0) ()
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and the filtrations in (4.10) and (4.11) are identical.

Proposition 4.11. Let A and p be integrally dominant weights and let w,y € W be elements
of maximal length in Wy, wW,, and Wy, ,yW, ., respectively. Assume that the Bj modules
LAVl € WH, are simple. Then multiplicities of £2/Y°F in the filtration (4.11) are given by

(MM wom)G) o | 1 (e —t(w)—j
T [(M”“’"“)(H”:E o] =)= _ p ().
j=0

where Py, (v) is the Kazhdan-Lusztig polynomial for the Weyl group W*.

Proof. Since the functor F) is exact this result follows from the Beilinson-Bernstein theorem (2.6).
The condition on ¥ is necessary for the module £2/¥°# to be nonzero. 1

The BGG resolution for affine braid groups

Let p € b* be such that —(u+ p) is dominant and regular and let W/ be a parabolic subgroup
of the integral Weyl group W*. Let wy be the longest element of W/ and fix v = wg o p. Following
the method of [Ch2], applying the exact functor F) to the BGG resolution in (2.7) produces an
exact sequence of Bj-modules

0—-Cny — - —C — Cy — LMY — 0 where Cr = @ MA/wOV, (4.12)
Lw)=j

and the sum is over all w € W/ of length j (in W¥#). Thus, in the Grothendieck group of the
category Oy of finite dimensional Bg-modules

[E}\/I/] _ Z (_1)5(10)[_/\/1)\/(“’0”)] (4.13)

weWwt

where v = wg o 1 and wy is the longest element of W/. This identity is a generalization of the
classical Jacobi-Trudi identity [Mac I (5.4)] for expanding Schur functions in terms of homogeneous
symmetric functions

S\/v = Z (_1)Z(w)h/\+5—w(l/+5)' (414)

Restriction of LM " to the braid group

The braid group By, is the quotient of the affine braid group by the relation Xt = 1 and so the
modules £*/9 are By-modules. The following proposition determines the structure of Fx(L(u)) as
a By module when L(u) is finite dimensional. This is a generalization of the Littlewood-Richardson
rule.

Proposition 4.15. Let Pt be the set of dominant integral weights. Define the tensor product
multiplicities c;’\w, A\, i, v € PT, by the U,g-module decompositions

L(p)® L(v) = @ L)

AepP+
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Then )
Resg (LMM) = €D (£7/°)%°

veP+

Proof. Let us abuse notation slightly and write sums instead of direct sums. Then, as a (Upg, Bx)
bimodule

)@ VEk = ZL ® LM

where LM # = Fy(L(u)). As a (Uyg, Br) bimodule

L(p) @ Ve = L(p) ® (Z Lv)® E”/O> Z CWL ® LY/0.

Comparing coefficients of L()\) in these two identities yields the formula in the statement. [

5. Markov traces

A Markov trace on the affine braid group is a trace functional which respects the inclusions
By C By C - - where

Bk - Bk+1
1 -k coe ki k41
[N IH[[H (5.1)
b — b '
[TTTTTT [TTTTTT
More precisely, a Markov trace on the affine braid group with parameters z,Q1,Q2,... € Cis a

sequence of functions )
mty: B, — C such that
(1) mty(1) =1,
(2) mty41(b) = mty(b), for b € B,
(3) mty(biby) = mty(boby), for by, by € By,
(4) mtppq (bT;) = zmty(b), for b € By,
(5) mtyy 1 (b(XE+1)7) = Q.mty(b), for b € By,

where
1 2 . k+1
ekt — erp=1l =1 p—1 _ T —T— 2
X TiTh—1 - - ToXT, T, T, cl—|=l=l=l=|= =

|

If M is a finite dimensional U = Uy g module and a € Endy (M) the quantum trace of a on M
(see [LR §3] and [CP Def. 4.2.9]) is the trace of the action of e"?a on M,

try(a) = Tr(e"Pa, M), and dim, (M) = tr,(idas) = Tr(e, M) (5.2)
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is the quantum dimension of M. The first step of the standard argument for proving Weyl’s dimen-

sion formula [B-tD, VI Lemma 1.19] shows that the quantum dimension of the finite dimensional
irreducible Ujg-module L(u) is

ko) —edreed)  pp Lt po)]

e3(pa) _e=%lpa) a0 [(p.a¥)] 7

dim(L(p)) = Tr(", L(u) = [] (5.3)

a>0
where ¢ = €/? and [d] = (¢ — ¢%)/(q¢ — ¢~ ') for a positive integer d.

Theorem 5.4. Let ju,v € PT be dominant integral weights. Let M = L(u) and V = L(v) and
let ®;, be the representation of By, defined in Proposition 3.5. Then the functions

mty: [;’k; — C
) try ()
dimy (M) dim,(V')*

form a Markov trace on the affine braid group with parameters

v,v+2 . A
2= u and Qr — Zqr(</\,>\+2p>—(u,u+2p>—(u,y+2p>) . dlmq(L()'\))cPW ’
dimg (V) dimg (L (p)) dimg (L(v))

A
where the positive integers cf;l, and the sum in the expression for (), are as in the tensor product
decomposition

L(u) ® L(v) = @ L) @<
A

Proof. The fact that mty, as defined in the statement of the Theorem satisfies (1)-(4) in the definition
of a Markov trace follows exactly as in [LR] Theorem 3.10c. The formula for the parameter z is
derived in [LR, (3.9) and Thm. 3.10(2)].

It remains to check (5). The proof is a combination of the argument used in [Or] Theorem
5.3 and the argument in the proof of [LR] Theorem 3.10c. Let ex: Endy (M @ VEF) — Endy (M ®
Vek=1)) be given by

e VeVt — C

r®¢ +—— dimy (V) Lg(e" ). (5:5)

er(2) = (dpyguen-—1n ®€) o (z ®id) where

If V is simple then é is the unique Uy g-invariant projection onto the invariants in V@V ™*. Pictorially,

s k—1

1 -+ kK 1---
LLLLL]] LU LI

Ek z = z = ek (2)

The argument of [LR| Theorem 3.10b shows that

mtk(b) = mtk_l(ek_l(b)), ifbe Bk (5.6)
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Since £1((X*')") is a Upg-module homomorphism from M to M and, since M is simple, Schur’s
lemma implies that

r loops {% = (X)) = ¢ -idyy, for some £ € C.

U

Let & =id2" ™V @ Ry @idF ™" Then (Xe+1)" = (Ry,--- Ry) "1 (X*)" (R - - Ry) and

mty 1 (b(X=H+1)") = mtk:(Ek(b(X”“) )
= mty (er(b( Ry -+ By) " (X*) (R -+ Ry))
= mtk(b(ﬁk Ry) e (X)) (Rye -+ Ra))
= mty, (b(Ry - - Ry1) 1€ -idpy Ry - Ry) = € - mty(b).

This last calculation is more palatable in a pictorial format,

= mtg

It remains to calculate the constant . By (2.14),
(Xs1)7" _ (R%)T = <Z qC(/\)P;i\V> — Z qTC()\)P:\V,
A A

where ¢(A\) = (A, A+ 2p) — (i, p + 2p) — (v,v + 2p) and Plf‘y is the projection onto the L(A)@C?LV
component in the decomposition of M @ V = L(u) ® L(v). Thus

1
€= mio(€ +idar) = mits (X)) = gyt (Z Q’“C(A’P?)
A

1
_ re(A ) id
dim, (M) dimg(V (Zq v LW)

o rc()\) )\ dlmq(L(A))
Zq # dimg (L(p)) dimg (L(v))’ '
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Remark 5.7. There is another formula [TW, Lemma (3.51)] for the constant @)1 in Theorem 5.4,
namely,

ZwEW (_1)f(w)q<u+p,w(v+p)>
Zwew (_1)€(w)q<u+p,wp) ’

Q1= (5.8)

where W is the Weyl group of g.

Let mt; be as in Theorem 5.4 and let Zj, = Endy (M ® V®F). Then mty, is the restriction of
the linear functional

mbg: 2k — C
" try(a) (5.9)
dim, (M) dim, (V®F)

to @k(lék) Since M @ V®* ig a finite dimensional semisimple module Z, is a finite dimensional
semisimple algebra. The weights of the Markov trace mt are the constants ¢/, defined by

A
A

where X%/ # are the irreducible characters of Zj.
k

Theorem 5.11. Let M = L(u) and V = L(v) be finite dimensional irreducible Uj,g-modules. The
weights of the Markov trace on the affine braid group defined in Theorem 5.4 are

b dimg(L))
/1 dimyg (L(w)) dimg (V)

Proof. Since M ® V®* is finite dimensional and semisimple the algebra Z; = Endy (M ® V&k ) is
a finite dimensional semisimple algebra. Schur’s lemma can be used to show that, as a (Upg, Z)
bimodule,

MeVer = LM e LM (5.12)
A

where the £ are the irreducible Z; modules. In the notation of (4.1), LM# = Fy\(L(y)) and
/# is the character of £**#. Taking the quantum trace on both sides of (5.12) gives

try(a) = e MPa) = ZTr “he L(X )‘/“ Ztrq X;{:‘( ).

The result follows by dividing both sides by dim,(L(p)) dim,(V)*. I



BRAIDS AND JANTZEN FILTRATIONS 21

6. Examples

Affine and cyclotomic Hecke algebras

Let ¢ € C* be transcendental (so that we may view it as a variable when necessary). The
affine Hecke algebra Hj, is the quotient of the group algebra CBy, of the affine braid group by the
relations

T? = (¢ — ¢ T, + 1, 1<i<k-1 (6.1)

The affine Hecke algebra Hj, is an infinite dimensional algebra with a very interesting representation
theory (see [KL] and [CG]). With X as in (3.4) the subalgebra

C[X] =C[X*e, ..., X**] = span {X* | A e L}

is a commutative subalgebra of Hy. Tt is a theorem of Bernstein and Zelevinsky (see [RR Theorem
4.12]) that the center of Hj, is the ring of symmetric (Laurent) polynomials in X*e1, ... X+e,

Z(Hy) = C[X]% = C[X*,..., X*F]%

If w € S define T, =T;, - T3, if w = s;, - -+ 54, is a reduced word for w in terms of the generating
reflections s; = (i, + 1), 1 <i < k — 1, of S. Then, with X* as in (3.4)

{X*T, | N € L,w € S} is a basis of Hy.

Let uy,...,u, € C. The cyclotomic Hecke algebra H, ; , with parameters ui,...,u,,q is the
quotient of the affine Hecke algebra by the relation

(X —up ) (X —ug) -+ (X' —u,) = 0. (6.2)

The algebra H, 1 , is a deformation of the group algebra of the complex reflection group G(r,1,n) =
(Z/rZ)1 S, and is of dimension r"n!. It was introduced by Ariki and Koike [AK] and its represen-
tations and its connection to the affine Hecke algebra have been well studied ([Ar],[AK],[Gk]).

The affine and cyclotomic BMW algebras

Fix ¢,z € C* and an infinite number of values Q1,Q2,... in C. The affine BMW (Birman-
Murakami-Wenzl) algebra Z, is the quotient of the group algebra CBy, of the affine braid group by
the relations

(6.32) (T —2z")(Ti+q )T —q) =0,
(6.3b) ET =TF'E, =:7'E,
(6.3c) E,TEYE;=2*'E; and E/TS\E; =2*'E;,
(6.3d) E;(X°)"E; = Q,F1,
(6.3¢) E1X1T1 Xt =27 1'Ey,
where the F;, 1 <i <k — 1, are defined by the equations

T, - T "
——t—=1-E, 1<i<k-1 (6.4)
q9—q
It follows that
9 z—z71
Ef =zE; where x = — +1 (6.5)

q9—4q
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The classical BMW algebra is the subalgebra Zj, of the affine BMW algebra which is generated by
Th,...,Tx—1, and Ey,...,Ex_1. Fix uy,...,u, € C. The cyclotomic BMW algebra Z, i is the
quotient of the affine BMW algebra by the relation

(X€1 —ul)(Xsl —UQ)"'(XEl —’LLT) =0. (66)

The cyclotomic BMW algebras have been defined and studied by [H&1-3] and, for all practical
purposes the affine BMW algebras appear in these papers. The cyclotomic BMW algebras are
quotients of the affine BMW algebras in the same way that cyclotomic Hecke algebras are quotients
of affine Hecke algebras. The classical BMW algebras Z;, = Z; 7 have been studied in [Wz2],
[HR], [Mu], [LR] and many other works. The “degenerate” version of the affine BMW algebras
was defined by Nazarov [Nz] who called them “degenerate affine Wenzl algebras”. The relation
between his algebras and the affine BMW algebras 2, is analogous to the relation between the
graded Hecke algebras (sometimes called the degenerate affine Hecke algebras) and the affine Hecke
algebras (see [Lu]).

Goodman and Hauschild [GH] have proved that elements of the affine BMW algebra can be
viewed as linear combinations of affine tangles. An affine tangle has k strands and a flagpole just
as in the case of an affine braid, but there is no restriction that a strand must connect an upper
vertex to a lower vertex. Let X' and T; be the affine braids given in (3.1) and let

= [ 111211

Then Z}, is the algebra of linear combinations of tangles generated by X<, Ty, ..., Th_1, E1, ..., Ex_1
and the relations in (6.3) expressed in the form

X - X = (¢—-q7") ' } - % (6.8)

4 - 1 wnd {J -
=Q, an \J = !, (6.10)
| Q d H 6.10

, (6.9)

SIU

r loops {

Z—Z_l

When working with this algebra it is useful to note that
T, 1 X5 1T, 1 X% = X5 X5 = X 1T, _( X5 1T,_q, and, by induction,
Ei 1 XS X = By Ty o T T X 2T 0Ty X5t
=B 1B o X2T; 5T T L X! (6.12)
=Ei 1By o X5 2T o X 2T 1T
=2 B B 9Ty 1Ty o =2""Ei 1B 2F; 1 =2""E;_;.
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Schur-Weyl duality for affine and cyclotomic Hecke and BMW algebras

In order to explicitly compute the representations of affine and cyclotomic Hecke algebras and
BMW algebras which are obtained by applying the functors F\ we need to fix notations for working
with the representations of finite dimensional complex semisimple Lie algebras of classical type.

Let g be a complex semisimple Lie algebra of type A,, By, C, or D, and let Upg be the
corresponding Drinfeld-Jimbo quantum group. Use the notations in [Bou, p. 252-258] for the root
systems of types A,,, By, C,, and D,, so that 1,...,e, are orthonormal (in type 4, also include

En—i—l);
b* ={Mer+ - Ag1Ens1 | N ER D, N =0}, intype A,, and
h* ={he1+ - Apen | N €R}, in types B,,, C,, and D,,,

the fundamental weights are given by

wj :81+"'+€Z‘—%_;_1(614-"'4—6”4_1), 1<1<n, in Type A,
w; =¢€1+---+¢&; 1<:<n—1, in Type B,,
wn :%(gl—i-..._i_gn),
w; =€e1+ - +e&y, 1<4i<n, in Type C,,
wi =¢€1+---+gy, 1<i<n-2,
Wpo1 = %(61 + ot en1 —en), in Type D,
Wn = 5(51+"'+5n—1+5n)7

and the finite dimensional Ujg modules L(\) are indexed by dominant integral weights

A=MNeEL+ -+ A\én AM> A > > )\, >0, in Type A,,
B+ tent1), A A EZ,
/\:>\161+"'+)\n5n7 )\12)\222)\71207
Aoy Apy € Z,oOr in Type By,

Ay A € 2+ Z,

A=A e+ -+ Apep, M2 > 20,20, in Type C,,,
)\17 7)‘neZ7

A=Ae1+ -+ A, AL > X > > A1 > A 20,
AlyevsAp € Z,0r in Type D,

Ay dn €142,

where |A] = A\ + -+ + Ay

n+1, in type A,,
2n, in type B,,
2n+ 1, in type C,,
2n — 1, in type Dy,

(6.13)
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and, in type A,, the sum is over 1 <i <n+ 1 instead of 1 <i < n.
Identify A with the configuration of boxes which has A; boxes in row ¢ (1 <7 <mn). If \; <0
put |A;| boxes in row ¢ and mark them with — signs. For example

I I 5e1 + Heg + 363 + 3e4 + 5 + g6 — nl—fl(el + - +¢&p41), Intype A,,
>\ = —=
] be1 + ey + 363 + 364 + €5 + €6, in types By, Cp, and D,
]
A= = %61 + %62 + %63 + %64 + %55 + %66, in Types B,, and Dn, and
s
A= = 6e1 + 6e9 + 4e3 + 4e4 + 2e5 — 2¢g, in Type Dg,

If b is a box in position (i, j) of A the content of b is
¢(b) = j — i = the diagonal number of b. (6.14)
If A= Xie1 4+ - Apen, then
MA+2p) —(A—ei, A —ei+2p) =2\ +2pi — 1=y + 2\, —2i =y + 2c(A\/ A7),

where A/A~ is the box at the end of row i in A. Note that ¢(A/A~) may be a j-integer. Also, in
types B,, and D,

N

N

N | =

n - n.o.n n? 4+ % in type B
n n 2 = — — 21 1) = — [ P — 2 49 nsy
(wnywn +2p) = 7+ ;Zl(y it =7+5y LR

2 n-
2

Using these formulas (A, A + 2p) can easily be computed for all dominant integral weights . For
example

4 )\ 2
_n|‘i“]. ) in type Anv
(MA+20) = ylA[+2D c(b) + 0, in type C, or in type B, with A\; € Z,  (6.15)
bEX
n  n? : )
Z—i_?’ in type B, with \; € 5 + Z.
For all dominant integral weights A in type A,,, B, and C,, we have

P Lot in type Ay,
AT

+ in e B, wi n ,
L) & L(wn) = LW@(@” )>’ type Bu with An =0 (6.16)

(@ L()\i)), in types C,, and D,,, and
£

\ in type B,, with A\,, =0,
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where the sum over AT is a sum over all partitions (of length < n) obtained by adding a box to A,
and the sum over A* denotes a sum over all dominant weights obtained by adding or removing a
box from A. In type D,, addition and removal of a box should include the possibility of addition
and remcl)val of a box marked with a — sign, and removal of a box from row n when \,, = % changes
An t0 —3

Theorem 6.17. Let g be the simple complex Lie algebra of classical type, U = Uyg the corre-
sponding quantum group and let V' = L(wy) be the irreducible Uyg module of highest weight w;.
For each M € O let ®,: B;, — Endy (M ® V®k) be the affine braid group representation defined in
Proposition 3.5.

(a) If g is type A, then ®y, is a representation of the affine Hecke algebra Hj, with q = e//2. (In
this Type A,, case use a different normalization of the map ®;, and set ®(T;) = ql/("“)RZ—.)

(b) If g is type A,, and if M = L(u) where p is a dominant integral weight then ®j is a repre-
sentation of the cyclotomic Hecke algebra Hy 1, (u1,...,u,) for any (multi)set of parameters
ui,...,u, containing the (multi)set of values ¢*“® as b runs over the addable boxes of L.

(c) If g is type B,, C, or D, and M is a highest weight module then there are unique values

Q1,Q2,. .. € C, depending only on the central character of M, such that ®y, is a representation
of the affine BMW algebra Z;, with parameters Q1,Qa, ...,

H ", in Type B,
q=e"?, and z=4q —¢*"*, in Type C,,
gt in Type D,,.

(d) If g is type By, Cy, or D, and M = L(p) where 1 is a dominant integral weight then ®j, is a
representation of the cyclotomic BMW algebra Z, 1 j, with q and z as in (c),

_ ré(ut o) dimg (L(p™)) .
Q=2 T dmg @) €2

o

and any (multi)set of parameters uy, ..., u, containing the (multi)set of values qé(#i’”) as ut
runs over the dominant integral weights appearing in the decomposition (6.14) of L) ® L(w1).
Here
-Y, if :u:t =M
&(u™, 1) = { 2e(u* /), if i 2 p,
—2(c(n/p*) +y), I pF Cop,
where y and c(b) are as defined in (6.13) and (6.15), respectively.

Proof. (a) It is only necessary to show that ®,(T;) = ¢"/("*tVR; satisfies (¢1/ D R;)? = (¢ —
¢ (gD R) + 1 for 2 <4 < n. This is proved in [LR, Prop. 4.4].

(c) The arguments establishing the relations (6.3a-c) in the definition of the affine BMW algebra
are exactly as in [LR, Prop. 5.10]. It remains to establish (6.3d-e). The element E; in the affine
BMW algebra acts on V®2 as x - pr, where pr, is the unique Upg-invariant projection onto the
invariants in V®2 and x is as in (6.5). Using the identity (6.9) and the pictorial equalities

| L% s

U% C T L
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it follows that ®o(Ey X1 Ty X®) acts as x2~ 1 R0y, a L, 10y (ida ® prg). By (2.11), this is equal
to

271 (Oum © Cr(0))Crrg ) ®2(idy @ Br) = 271 - On Oy @a(idy © Br) = 271 - @5(En),

establishing the relation in (6.3e).

Since ®5(E1) acts as x - (idys @ pry) on M ®@ V2 the morphism ®5(E; X 1 E;) is a morphism
from M ® L(0) — M ® L(0). Since M = M ® L(0) is a highest weight module this morphism is
Q. -idpy, for some @, € C. By the results of Drinfeld [Dr] and Reshetikhin [Re] (see [Ba, p. 250]),
the action of the morphism ®5(F; X" ¢! Ey) corresponds to the action of a central element of Uyg
on M. Thus the constant ). depends only on the central character of M.

(b) Let by, ..., b, be the addable boxes of ¢ and consider the action of X** on M®V = L(p)®L(w1).
We will show that @, (X1) = R2 satisfies the relation (R2—wu;) - - - (R3—u,.) = 0, where u; = ¢?(%+).
By (2.11) and (2.14) it follows that

- + _ _ + + +
R(Q) — Z q<u s BT H20)—(p, pt2p) — (w1 ,w1+2p)p57w1 _ Z q2c(u /M)Pﬁ,wla
ut

ut

where the sum is over all partitions u obtained by adding a box to pu, Pﬁ:ul is the projection onto
L(p™) in the tensor product M @ V = L(p) ® L(w), and ¢(u/p) is the content of the box pt/u
which is added to u to get u™. Thus R% is a diagonal operator with eigenvalues q%(‘ﬁ/ #) and so

it satisfies the equation (6.2).

(d) Using the appropriate case of the decomposition rule for L(u)® L(wy), the proof of the relation
(X% —up) -+ (X —wu,) =0is as in (b). The values of &(u*, 1) are determined from (6.16). To
compute the value of @, note that ®(F1 X" 1 Ey) = ®o(e1(X 1) E1), in the notations of the proof
of Theorem 5.4. Thus @, is determined by the formula in Theorem 5.4 and the decomposition of
L(p) ® L(wy) in (6.14). 1

Remark. The parameters in @1, Qs, ... € C needed in Theorem 6.17c can be determined by using
the formula of Baumann [Ba, Theorem 1] which characterizes @, in terms of the values @)1 given
in (5.8). To do this it is necessary to use formula (5.8) for ); several times: p is always the highest
weight of M, but many different v will be needed. Note that the proof of the formula (5.8) for @,
in [TW] does not require p to be dominant integral.

The following theorem provides an analogue of Schur-Weyl duality for the affine Hecke alge-
bras, cyclotomic Hecke algebras, affine BMW algebras and cyclotomic BMW algebras. Alternative
Schur-Weyl dualities have been given by Chari-Pressley [CP2] for the case of affine Hecke alge-
bras and by Sakamoto and Shoji [SS] for cyclotomic Hecke algebras. Cherednik [Ch] also used
a Schur-Weyl duality for the affine Hecke algebra which is different from the Schur-Weyl duality
given here.

Theorem 6.18. Assume that g is not of type D,,. Let i be a dominant integral weight and let
M = L(u). In each of the cases given in Theorem 6.17 the representation ®y, is surjective.

Proof. Part (a) is a consequence of (b) since the representation of Hy, in (a) is the composition of
the representation ®: H,. 1 — Endy, 4(L(1) ® V*) from (b) with the surjective algebra homo-
morphism Hj, — H, ;1 coming from the definition of H, ; ;. Similarly part (c) is a consequence
of part (d). The proof of the surjectivity of the representation in Theorem 6.17b and Theorem
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6.17d are exactly the same as the proofs of [LR, Cor. 4.15] and [LR, Cor. 5.22], respectively. The
case considered there is the y = 0 case but all the arguments there generalize verbatim to the case
when p is an arbitrary dominant integral weight. In [LR, §4] the elements X< in the affine braid
group are denoted D;. The assumption n >> k in [LR] is uncessary for this theorem if the full
decomposition rule given in (6.14) is used.

The main point is that the eigenvalues of X*! ..., X separate the components of the decom-
position of L(p) ® V¥, By induction it is sufficient to check that the eigenvalues of X=* distiguish
the components of L(\) ® V for all \. By (2.10), (2.11) and (2.14), the eigenvalues of X are
of the form q%()‘i’/\) where A is a dominant integral weight &A%, \) is as in Theorem 6.17d and
AT runs over the components in the decomposition (6.14) of L(A) ® V. Different addable boxes
for A can never have the same content since they cannot be in the same diagonal. Similarly for
two different removable boxes. Let b be an addable box and 4" a removable box for A. Unless g is
type D,, and b and b’ are in row n, we have ¢(b), c¢(b') > —n — 1. Thus, when g is not of type D,,,
c(b) # —c(b') — y and so the two eigenvalues coming from these boxes are different. I

Let Z;, denote the affine Hecke algebra, the cyclotomic Hecke algebra, the affine BMW algebra
or the cyclotomic BMW algebra corresponding to the case of Theorem 6.17 which is being consid-
ered. Then, as in the classical Schur-Weyl duality setting, Theorem 6.18 implies that as (Upg, ék)
bimodules

L(p) @ VO = LK) & £, (6.19)
A

where L()) is the irreducible U}, g-module of highest weight A and £*/* is the irreducible Z;, module
defined by 4.1.

The irreducible Z;, modules £ # appearing in (6.19) can be constructed quite explicitly. All
the necessary computations for doing this have already been done in [LR, §4 and 5] which does
the case p = 0. All the arguments in [LR, §4 and 5] generalize directly to the case when pu is an
arbitrary dominant integral weight. The final result is Theorem 6.20 below. The result in part (a)
of Theorem 6.20 is due to Cherednik [Ch].

If A and p are partitions such that A O u the skew shape A/ is the configuration of boxes of
in A\ which are not in pu. Let A/u be a skew shape with k& boxes. A standard tableau of shape \/u
is a filling 7" of the boxes of \/u with 1,2,..., k such that

(a) the rows of T" are increasing (left to right), and
(b) the columns of T are increasing (top to bottom).

For example,

3[4]9]12]
1510
7 1314

2]

8]

11

is a standard tableau of shape \/p = (977421)/(5443).
For any two partitions p and A an up down tableau of length k from p to X is a sequence of
partitions 7' = (u =70 7O k=D k) = )\) such that

(a) 7D D 70=1 and 7 /7(-D = or (b) 70-D D70 and 76-1 /7() =,
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and, in type B,, the situation 70~ = 7() with £(7¢~1)) = n is also allowed. Note that a standard
tableau A/p with k boxes is exactly an up down tableau of length & from p to A where all steps in
the sequence satisfy condition (a).

Theorem 6.20.
(a) Let A\/p be a skew shape with k boxes. Then the module L1 = Fy(L(w)) for the affine Hecke
algebra Hj, is irreducible and is given by

LMH = span{vp | T standard tableaux of shape \/u}
(so that the symbols vy are a C-basis of L #) with Hj, action given by

Xewp = 2Ty 1<i<kh
Tivr = (Ti)rrvr + \/(q_l + (T)rr) (e + (1) s,1,5,7) Vs,Ts 1<i<k-—1,
where )
q—q

(T;)rr is the constant 1 = g2eT0) (TG’

¢(b) denotes the content of the box b,
T'(i) is the box containing i in T,
s; T is the same filling as T except i and i + 1 are switched, and

vs,7 = 0 if 5;T is not a standard tableau.
(b) Let \/uu be a pair of partitions. Then the module L# = F\(L(u)) for the affine BMW
algebra Zj is irreducible and is given by

T:(,U,:T(O),...,T(k):)\) an }

Ap
. “pad {UT ’ up down tableau of length k from i to A

(so that the symbols vy are a C-basis of L") with Z, action given by

XEiUT — qé(T(i),T“_l))vT’ 1<i< k’
Eivr = 6,641 76-1) Z(Ei)STUSa and  Tyvr = Z(Ti)ST'USa 1<i<k—1,
S S
where both sums are over up-down tableaux S = (p =7, ... 701 g 70D k) =

)\) that are the same as T except possibly at the ith step and
/iy (L(r®)) dimg(L(e))
= € -

E; 4 )
(Ei)st dim, (7(=1)
\/(q_l +(T)rr) (¢t + (Th)ss), if 70D £ 70+ and S £ T,
(Ti)sr = qg—q !
<1 - 5(T<z‘+1>,au))a(T(i),T(i—l))—l) (057 = (Ei)st),  otherwise,
271 o if 7(0) = T(i_l),
6(7_(i)77_(i71)) _ q2c(7-(1)/‘r(’*1))’ jfT(i) ) T(i_l),

Z—zq—zc(ﬁi*l)/#“)? if 1) € 7 G=1)

and € = 1, in type B, and D,,, and ¢ = —1 in type C,,.
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Markov traces on affine and cyclotomic Hecke and BMW algebras

If M = L(u) where p is a dominant integral weight and V' = L(w;) then each of the represen-
tations ®: Zj, — Endy, (M ® V®F) (where Z}, is the affine Hecke algebra, the cyclotomic Hecke
algebra, the affine BMW algebra, or the cyclotomic BMW algebra) gives rise to a Markov trace
via Theorem 5.4. The parameters and the weights of these Markov traces are given by Theorems
5.4 and 5.11.

In type A case \/pu is a skew shape with k boxes and the parameters and the weights of (most
of) these traces have been given in terms of partitions in [GIM]. In [GIM], p is a partition of a
special form ([GIM, 2.2(*)]) and so, in their case, the skew shape A/u can be viewed as an r-tuple
of partitions. Their formulas can be recovered from ours by rewriting the quantum dimension
dimg(L(X)) from (5.3) in terms of the partition as in [Mac, I §3 Ex. 1]:

dimg(L(X)) = H M, in the type A,, case, (6.21)
L)

where, if b is the box in position (4,7) of A, then h(b) = A\; —i + X} — j + 1 is the hook length at
b, and [d] = (¢ — q~%)/(q — q~') for a positive integer d. Thus, the first formula in [GIM, §2.3]
coincides with dim,(L()))/(dim,(V))/* and so the formula for the weights of the Markov trace on
cyclotomic Hecke algebras which is given in [GIM, Prop. 2.3] coincides exactly with the formula
in Theorem 5.11. To remove the constants that come from the difference between gl,, and sl,, the
affine braid group action in Theorem 6.17a should be normalized so that &, (X¢) = ¢?I#/(n+1) B2
and @, (T;) = ¢*/("*VR;. Then, from Theorem 5.4, (6.14) and (6.16) it follows that the parameters
of the Markov trace are z = ¢"*!/[n + 1] and

= 2re(pt /) dimq(L(M+))
Q ; 4 dimy (L () dim, (V)

ZZqQ’“C(W/u) I1 [n+1+c)] H[ [h(b)] 1

AL o) [+ 14c)] | 1]

ore(ut [Toe, PO\ [0+ 1+ e(ut/p)]
= e(u™/u) p
%;q (H%w%@ﬂ> i+ 1]

_NC 2re(ut [h(0')] [2(0)] \ [n+ 1+ c(ut/p)]
_;q ( ”(H [h(b’)+1]> (H [h(b”)+1]> n+1

b/ b/l

where, in the last expression, the first product is over boxes b’ € u which are in the same row as
the added box p/p and the second product is over b € p which are in the same column as u™ /.
Then cancellation of the common terms in the numerator and denominators of each product yields
the combinatorial formulas for the parameters of the Markov traces on cyclotomic Hecke algebras
which are given in [GIM, Thm. 2.4].

Lambropoulou [Lb, §4] has proved that there is a unigue Markov trace on the affine Hecke
algebra with a given choice of parameters z,Q1,...,Q, € C. A similar result is true for the affine
BMW algebra.

Theorem 6.22. For each fixed choice of parameters q, z and (Q1,Q2, . .. there is a unique Markov
trace on the affine BMW algebra Z.
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Sketch of proof. Consider the image of an affine braid b in the affine BMW algebra. The Markov
trace of this braid can be viewed pictorially as the closure of the braid b.

mtk(b) = mt, b

Consider a string in the closure as it winds around the other strings and the pole. If the string
crosses another string twice without going around the pole between these two crossings then we

can use the relation
— 4 (g—qg ! _.
Q= ||
)

4

to rewrite the closed braid as a linear combination of closed braids with fewer crossings between
strings. By successive steps of this type we can reduce the computation of the Markov trace of a
braid to a linear combination of

|
1 oops {%

— er . Q’I”k . mt — QTl . Q’I”k I
“dim, (V)F “dim, (V)F
ri loops {CH:
|
U
Remark. For computations it is helpful to note that
] in type A,
n| + in type B,

dimg(L(wq)) = (6.23)

[n+
2
[2n + 1] —1, in type Cy,
2n —1]+1, in type D,,.
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Standard and simple modules for affine Hecke algebras

The original construction of the irreducible representations of the affine Hecke algebra of type
A is due to Zelevinsky [Ze2] and is an analogue of the Langlands construction of admissible repre-
sentations of real reductive Lie groups. Zelevinsky used the combinatorics of multisegments which
is easily seen to be equivalent to the combinatorics of unipotent-semisimple pairs used later in
[KL] (see [Ar]). Here we show how the construction of affine Hecke algebra representations via the
functors F naturally matches up with Zelevinsky’s indexings by multisegments. Using the multi-
segment indexing of representations, Theorem 6.31 below explicitly matches up the decomposition
numbers for affine Hecke algebras with Kazhdan-Lusztig polynomials. Recall that the functor F
gives representations of the affine Hecke algebra in the setting of Theorem 6.17a when g is of type
A, and V = L(wy) is the n-dimensional fundamental representation.

Consider an (infinite) sheet of graph paper which has its diagonals labeled consecutively by

.,—2,-1,0,1,2,.... The content c¢(b) of a box b on this sheet of graph paper is

¢(b) = the diagonal number of the box b
(a natural generalization of the definition of ¢(b) in (6.15)). A multisegment is a collection of rows
of boxes (segments) placed on graph paper. We can label this multisegment by a pair of weights

A=Ae1+ - Apyi1€ny1 and g = p1€1 + -+ + fny1€p41 by setting

(A + p)i = content of the last box in row i, and

(1w + p); = (content of the first box in row 7) — 1.

For example

13|4|5]6]7
3|4|5/6]|7
A+p=(7,7,7,5 5 and
5|6 7| corresponds to p= ) an (6.24)
[1]2]3]4]5 ptp=(2,24,0 2
3|45

(the numbers in the boxes in the picture are the contents of the boxes). The construction forces
the condition

(a) (A+p)i —(1+p)i € Zxo.
and since we want to consider unordered collections of boxes it is natural to take the following
pseudo-lexicographic ordering on the segments

() (A+p)i = (A+pit1,
() (w+p)i < (B p)ivr if A+ p)i = A+ p)iv1,

when we denote the multisegment A/u by a pair of weights A, p. In terms of weights the conditions
(a), (b) and (c) can be restated as (note that in this case both A and u are integral)

(a’) X\ — p is a weight of V¥ where k is the number of boxes in \/pu,
(b’) A is integrally dominant,
(') p=wov with v integrally dominant and w maximal length in the coset Wx; ,wW, 4,

These conditions on the pair of weights (A, 1) arose previously in Proposition 4.3d and Lemma 4.7.
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Let A/u be a multisegment with k& boxes and number the boxes of \/u from left to right (like
a book). Define

ETA/LL — subalgebra of Hj, generated by {X*, T; | A € L, box; is not at the end of its row},

so that H, /u 18 the “parabolic” subalgebra of Hj, corresponding to the multisegment A/p. Define
a one-dimensional H, /u module Cy/, = Cvy/, by setting

XEiU)\/u _ qQC(boxi)

Ux/ps and Tivxn/p = qUA/ps (6.25)
for 1 <7 <k and j such that box; is not at the end of its row.

Let g be of type A, and let Fy be the functor Homy, 4(M()),- @ V®F) from the setting of
Theorem 6.17a, where V' = L(w1). The standard module for the affine Hecke algebra Hy, is

MAME = Fy(M (1)) (6.26)

as defined in (4.1). It follows from the above discussion that these modules are naturally indexed
by multisegments \/u. The following proposition shows that this standard module coincides with
the usual standard module for the affine Hecke algebra as considered by Zelevinsky [Ze2] (see also
[Ar], [CG] and [KL]).

Proposition 6.27. Let A\/u be a multisegment determined by a pair weights (A, p) with A
integrally dominant. Let Cy,,, be the one dimensional representation of the parabolic subalgebra

I:I)\/M of the affine Hecke algebra Hj, defined in (6.25). Then

VT H
MM B Indg’;m((CA/M).

Proof. 'To remove the constants that come from the difference between gl,, and sl, the affine
braid group action in Theorem 6.17a should be normalized so that ®(X=1) = ¢?#l/(*+D RZ and
(I)k(Tz) = ql/(n—&-l)Ri‘

By Proposition 4.3a, M*# =~ (V®*)\_, as a vector space. Let {v1,vs,...,vn41} be the
standard basis of V = L(w;) with wt(v;) = ;. If we let the symmetric group Sy act on V¥ by
permuting the tensor factors then

(V) s_,, = span-{m - v®P =1 | 1 € S} = span-{r - v®P"M | 7w € S /Sy\_,.}, where

U®(>\_u):U1®“'®Ul®"‘®vn®"'®vn and S/\fuzshfmx”'x's)\nfun
—_—— —_—
)\1—/141 >\7L_1u/7L

is the parabolic subgroup of S; which stabilizes the vector v®*—#) € V®F  This shows that, as
vector spaces,

MM Indg’;‘/ (Cx/p) = span-{Tx @ v/, | 7 € Sk/Sx_u} (6.28)

are isomorphic.
For notational purposes let

ba/p = v/j Q@ v®A 1 = v,j QUi @+ QU4
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and let B/\/u be the image of by, in (M ® VORI Since X is integrally dominant and B/\/u has
weight A it must be a highest weight vector. We will show that X< acts on by, by the constant

q“P°*0) where c(box,) is the content of the fth box of the multisegment \/p (read left to right
and top to bottom like a book).
Consider the projections

pry: M(pu) @ VOF — (M (1) ® VW)[)‘(Z)} ® Vek-9 where A0 =+ Z wt(v;,)

J<t
and pr, acts as the identity on the last k — i factors of M (u) ® V®*. Then

B)\/,u = PrppPryg_q-- 'prlb)\/;u

and for each 1 < ¢ <k, (the first £ components of) pr,_; --- pry(by,) form a highest weight vector
of weight \©) in M ® V®¢. It is the “highest” highest weight vector of

(M () @ VEEIAT] g )] (6.29)

with respect to the ordering in Lemma 4.2 and thus it is deepest in the filtration constructed there.
Note that the quantum Casimir element acts on the space in (6.29) as the constant q<)‘(£)’A<Z)+2”)
times a unipotent transformation, and the unipotent transformation must preserve the filtration
coming from Lemma 4.2. Since pr,(b,,,) is the highest weight vector of the smallest submodule of
this filtration (which is isomorphic to a Verma module by Lemma 4.2b) it is an eigenvector for the
action of the quantum Casimir. Thus, by (2.11) and (2.13), X*¢ acts on pr,(by,,) by the constant

q<)\(£)’)\(8)+2p>_</\(271)’)\(671)+2p)—<w1,w1+2p> — q2c(boxz)‘

(see [LR] Since X¢¢ commutes with pr; for j > ¢ it this also specifies the action of X¢¢ on

bx/u = pre(basp)- )
The explicit R-matrix Ryy:V @V — V@V for this case (g of type A and V = L(w)) is well
known (see, for example, the proof of [LR, Prop. 4.4]) and given by

vV &Q Vg, if 1 > j,
(v; ® Uj)ql/("H)RVV =< (¢g—q¢Hvu® v vy v, ifd < g,
qvi®vj, ifi:j.

Since T} acts by Ryy on the ith and (i + 1)st tensor factors of V@ and commutes with the
projection pry it follows that T;(by,,) = qbx/,, if box; is not a box at the end of a row of \/u.

This analysis of the action of H /u on by /u shows that there is an Hj,-homomorphism

Hy,
IndH’;/H((CU/\/M) — MMe

UA/u — by

This map is surjective since M*# is generated by by /u (the By action on v** generates all of
(V®*)5_,). Finally, (6.28) guarantees that it is an isomorphism. NI

In the same way that each weight u € h* has a normal form

it integrally dominant, and

pu— [0 i h 1 i
H=wop, wit w maximal length in the coset wWj4,,
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every multisegment A\/u has a normal form

v + p the sequence of contents of boxes of A\/p,
A p=v/(wor), with v=v-—(1,1,...,1), and
w maximal length in W, ,wW, .

The element w in the normal form v/(w o 7) of A/u can be constructed combinatorially by the
following scheme. We number (order) the boxes of A/u in two different ways.

First ordering: To each box b of \/u associate the following triple
(content of the box to the left of b, —(content of b), —(row number of b))

where, if a box is the leftmost box in a row “the box to its left” is the rightmost box in the same
row. The lexicographic ordering on these triples induces an ordering on the boxes of A/ p.

Second ordering: To each box b of A/ associate the following pair
(content of b, —(the number of box b in the first ordering))

The lexicographic ordering of these pairs induces a second ordering on the boxes of A/ .

If v is the permutation defined by these two numberings of the boxes then w = wovwg. For
example, for the multisegment A/u displayed in (6.24) the numberings of the boxes are given by

121] 6 [10[13]18 | 3] 7]12]16]19
20| 5|9 [12[17 4|8 13[17]20
19]11[16] and 11]18[21]
115 1]2]4]8 [1]2]6]9]14
143 7| 5 [10[15]
first ordering of boxes second ordering of boxes

and the normal form of A/u is

v=(7,7,76,6,6,505,50505,4,4,4,4,3,3,3,3,2,1),
v=1(6,6,6,5,55,4,4,4,4,4,3,3,3,3,2,2,2,2,1,0), and w = wovwy where

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
S \15 1 21 20 14 2 6 5 4 3 19 10 9 8 7 13 12 11 18 17 16

Let g be of type A,, and V = L(w;) and let
LME = Fy(L()), (6.30)

as defined in (4.1). It is known (a consequence of Proposition 6.27 and Proposition 4.3c) that
LM # is always a simple H-module or 0. Furthermore, all simple Hj, modules are obtained by this
construction. See [Su] for proofs of these statements. The following theorem is a reformulation of
Proposition 4.12 in terms of the combinatorics of our present setting.

Theorem 6.31. Let A\/u and p/T be multisegments with k boxes (with p and T assumed to be
integral) and let

Mp=v/(wer) —and  p/T=r/(vo7)
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be their normal forms. Then the multiplicities of £P/™ in a Jantzen filtration of M are given
by
A j .
3 (MMm)G) ol | @ —tw)ts) _ f Puo(v), v =17,
2 | MG 0, ity # 7,
J>

where P, (v) is the Kazhdan-Lusztig polynomial for the symmetric group Sj,.

Theorem 6.31 says that every decomposition number for affine Hecke algebra representations
is a Kazhdan-Lusztig polynomial. The following is a converse statement which says that every
Kazhdan-Lusztig polynomial for the symmetric group is a decomposition number for affine Hecke
algebra representations. This statement is interesting in that Polo [Po| has shown that every
polynomial in 1+ vZx[v] is a Kazhdan-Lusztig polynomial for some choice of n and permutations
v,w € Sy. Thus, the following proposition also shows that every polynomial arises as a generalized
decomposition number for an appropriate pair of affine Hecke algebra modules.

Proposition 6.32. Let A = (r,r,...,r) = (r") and p = (0,0,...,0) = (0"). Then, for each pair
of permutations v,w € S,., the Kazhdan-Lusztig polynomial P, (v) for the symmetric group S, is
equal to
MM wor(5) N T )
Pr(v) = 3 [(( ' paon | G ) —tw)+i)

A/wo i+1) °
= M wop)(G+1)

Proof. Since p+ p and A+ p are both regular, Wx;, = W4, = 1 and the standard and irreducible
modules £ (¥°1) and M* (V1) ranging over all v,w € Sj. Thus, this statement is a corollary of
Proposition 4.12. 1
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