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Abstract

Generalized Hall-Littlewood polynomials (Macdonald spherical func-
tions) and generalized Kostka—Foulkes polynomials (g-weight multiplic-
ities) arise in many places in combinatorics, representation theory, ge-
ometry, and mathematical physics. This paper attempts to organize the
different definitions of these objects and prove the fundamental combi-
natorial results from “scratch”, in a presentation which, hopefully, will
be accessible and useful for both the nonexpert and researchers cur-
rently working in this very active field. The combinatorics of the affine
Hecke algebra plays a central role. The final section of this paper can
be read independently of the rest of the paper. It presents, with proof,
Lascoux and Schiitzenberger’s positive formula for the Kostka—Foulkes
poynomials in the type A case.

0 Introduction

The classical theory of Hall-Littlewood polynomials and the Kostka—Foulkes
polynomials appears in the monograph of I.G. Macdonald [11]. The Hall-
Littlewood polynomials form a basis of the ring of symmetric functions and
the Kostka—Foulkes polynomials are the entries of the transition matrix be-
tween the Hall-Littlewood polynomials and the Schur functions.

This theory enters in many different places in algebra, geometry and com-
binatorics. Many of these connections appear in [11].

(a) [11, Ch. II] explains how this theory describes the structure of the Hall
algebra of finite o-modules, where o0 is a discrete valuation ring.

(b) [11, Ch. IV] explains how the Hall-Littlewood polynomials enter into the
representation theory of GL,(F,) where F, is a finite field with ¢ elements.

(c) [11, Ch, V] shows that the Hall-Littlewood polynomials arise as spherical
functions for GL,,(Q,) where Q, is the field of p-adic numbers.

(d) [11, Ch. IIT §6 Ex. 6] explains how the Kostka—Foulkes polynomials relate
to the intersection cohomology of unipotent orbit closures for G L, (C)
and [11, Ch. IIT §8 Ex. 8] explains how the Kostka—Foulkes polynomials
describe the graded decomposition of the representations of the symmetric
groups 5, on the cohomology of Springer fibers.
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(e) [11, Ch. T App. A §8 and Ch. IIT §6] shows that the Kostka—Foulkes poly-
nomials are g-analogues of the weight multiplicities for representations of
GL,(C).

(f) [11, Ch. III (6.5)] explains how the Kostka-Foulkes polynomials encode a
subtle statistic on column strict Young tableaux.

Macdonald [12, (4.1.2)] showed that there is a formula for the spherical
functions for the Chevalley group G(Q,) which generalizes the formula for
Hall-Littlewood symmetric functions. This combinatorial formula is in terms
of the root system data of the Chevalley group G. In [10] Lusztig showed that
Macdonald’s spherical function formula can be seen in terms of the affine Hecke
algebra and that the “g-weight multiplicities” or generalized Kostka—Foulkes
polynomials coming from these spherical functions are Kazhdan—Lusztig poly-
nomials for the affine Weyl group. Kato [5] proved the “partition function for-
mula” for the ¢g-weight multiplicities which was conjectured by Lusztig. The
partition function formula has led to continuing analysis of the connection
between the g-weight multiplicities, functions on nilpotent orbits, filtrations
of weight spaces by the kernels of powers of a regular nilpotent element, and
degrees in harmonic polynomials (see [4] and the references there).

The connection between Hall-Littlewood polynomials and o-modules has
seen generalizations in the theory of representations of quivers, the classical
case being the case where the quiver is a loop consisting of one vertex and
one edge. This theory has been generalized extensively by Ringel, Lusztig,
Nakajima and many others and is developing quickly; fairly recent references
are [15] and [16].

The connection to Springer representations of Weyl groups and the repre-
sentations of Chevalley groups over finite fields has been developed extensively
by Lusztig, Shoji and others; a good survey of the current theory is in [18] and
the recent papers [19] show how this theory is beginning to extend its reach
outside Lie theory into the realm of complex reflection groups.

Since the theory of Macdonald spherical functions (the generalization of
Hall-Littlewood polynomials) and ¢-weight multiplicities (the generalization
of Kostka—Foulkes polynomials) appears in so many important parts of math-
ematics it seems appropriate to give a survey of the basics of this theory. This
paper is an attempt to collect together the fundamental combinatorial results
analogous to those which are found for the type A case in [11]. The presenta-
tion here centers on the role played by the affine Hecke algebra. Hopefully this
will help to illustrate how and why these objects arise naturally from a com-
binatorial point of view and, at the same time, provide enough underpinning
to the algebra of the underlying algebraic groups to be useful to researchers in
representation theory.

Using the terms Hall-Littlewood polynomial and Macdonald spherical func-
tion interchangeably, and using the words Kostka—Foulkes polynomial and q-
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weight multiplicity interchangeably, the results that we prove in this paper are
as follows.

(1) The interpretation of the Hall-Littlewood polynomials as elements of the
affine Hecke algebra (via the Satake isomorphism).

(2) Macdonald’s spherical function formula.

(3) The expansion of the Hall Littlewood polynomial in terms of the standard
basis of the affine Hecke algebra.

(4) The triangularity of transition matrices between Macdonald spherical func-
tions and other bases of symmetric functions.

The straightening rules for Hall-Littlewood polynomials.

The orthogonality of Macdonald spherical functions.

()
(6)
(7) The raising operator formula for Kostka—Foulkes polynomials.
(8) The partition function formula for g-weight multiplicities.

(9)

The identification of the Kostka-Foulkes polynomial as a Kazhdan-Lusztig
polynomial.

All of these results are proved here in general Lie type. They are all pre-
viously known, spread throughout various parts of the literature. The presen-
tation here is a unified one; some of the proofs may (or may not) be new.

Section 4 is designed so that it can be read independently of the rest of
the paper. In Section 4 we give the proof of Lascoux-Schiitzenberger’s positive
combinatorial formula [9] (see also [11, Ch. III (6.5)]) for Kostka—Foulkes poly-
nomials in type A. Versions of this proof have appeared previously in [17] and
in [2]. This proof has a reputation for being difficult and obscure. After finally
getting the courage to attack the literature, we have found, in the end, that
the proof is not so difficult after all. Hopefully we have been able to explain
it so that others will also find it so.

Acknowledgements. A portion of this paper was written during a stay of A.
Ram at the Newton Institute for the Mathematical Sciences at Cambridge Uni-
versity. A. Ram thanks them for their hospitality and support during Spring
2001. The preparation of this paper has been greatly aided by handwritten
lecture notes of 1.G. Macdonald from lectures he gave at the University of
California, San Diego, in Spring 1991. In several places we have copied rather
unabashedly from them. Over many years Professor Macdonald has generously
given us lots of handwritten notes. We cannot thank him enough, these notes
have opened our eyes to many beautiful things and shown us the “right way”
many times when we were going astray.
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1 Weyl groups, affine Weyl groups, and the affine Hecke
algebra

This section sets up the definitions and notations. Good references for this
preliminary material are [1], [20] and [14].

1.1 The root system and the Weyl group

Let hi be a real vector space with a nondegenerate symmetric bilinear form
(, ). The basic data is a reduced irreducible root system R (defined below) in
hi. Associated to R are the weight lattice

P={\eb;| (\a")eZforall o € R}, where o' =

and the Weyl group W = (s, | @ € R) generated by the reflections

Sa © bp — b
§ — A—()\H,goz\/)oz (1.2)

in the hyperplanes
H,={z €bi | (z,a") =0}, a € R. (1.3)

With these definitions R is a reduced irreducible root system if it is a subset
of hi such that

(a) R is finite, 0 ¢ R and b, = R-span(R),

(b) W permutes the elements of R, that is, wa € R for w € W and o € R,
(c) W is finite,

(d) RC P,

(e) if o € R then the only other multiple of o in R is —a,

(f) bg is an irreducible W-module.

The choice of a fundamental region C' for the action of W on b is equivalent
to a choice of positive roots RT of R,

Rt={a€R| (z,a") >0foral z e C}

and
C={zebg|(r,a")>0forall a € RT}.
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Example 1.1 If b} = R? with orthonormal basis £; = (1,0) and &, = (0, 1),
P = Z-span{eq,e2}, and W = {1, s1, S2, 5152, S251, $15251, $25182, $1825152} 18
the dihedral group of order 8 generated by the reflections s; and s; in the
hyperplanes H,, and H,,, respectively, where

_ VvV __

o = 2¢q, af = ¢y,
_ VvV

Qp = €2 — €1, Qy = Q,

then
R = {+aq, s, (g + ), (g + 2a) }.

Ha1+O<2 5.C @ HO@
° °

51820 520
° °
. o Ha, 20,
° °

51825:C 5951C

°

818281820 8281820

This is the root system of type Cs.

For each o € R* define the raising operator Ry: P — P by Rop = u+ a.
The dominance order on P is given by

p<A if  AN=Rg - Rgp (1.4)

for some sequence of positive roots 3y,...,3, € R*.
The various fundamental chambers for the action of W on b are the w='C,
w € W. The inversion set of an element w € W is

R(w) = {a € R"| H, is between C' and w™'C}, and
(1.5)
l((w) = Card(R(w))
is the length of w. If R~ = —RT = {—a | a € R"} then

R=R"UR and R(w)={a € R"|wa€ R}, for w e W.
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The weight lattice, the set of dominant integral weights, and the set of
strictly dominant integral weights, are

P = {hebs| (\aY)eZforall ae R},
Pt=PnC = {Aebi|{(\aY)€Zyforallae RY},  (1.6)
Pt =PNnC = {Aebi|(\aY)€Zsyforal ae R},

where C' = {x € b | (v,aV) >0 for all « € R*} is the closure of the funda-
mental chamber C.

The simple roots are the positive roots o, . . ., a, such that the hyperplanes
H,., 1 <1< n, are the walls of C. The fundamental weights, wy, ... ,w, € P,
are given by (w;, o) = d;;, 1 <4, <n, and

P=> TZw, P'=) Zsw;, and P =Y Z qw. (1.7)
i=1 i=1 i=1

The set PT is an integral cone with vertex 0, the set P™* is a integral cone
with vertex

n + ++
p:Zwi: : Z a, and the map P)\ : f\3+p (1.8)
i=1 a€Rt

is a bijection (see Proposition 2.3). In Example 1.1, with the root system of
type C5, the picture is

Ha1 C Ha C

H,, ! e o Ha,
5152C 5152C
s15251C s15251C
51898182C 51828182C 31251326’
The set P* The set P+
The simple reflections are s; = s,,, for 1 < ¢ < n. The Weyl group W has a
presentation by generators sq,..., s, and relations
2 _ .
s; = 1, for 1 <1< n,
5i5Si+ 1 = 5;8iSj i ], (1.9)
— ~—

m;; factors m;; factors
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where 7/m;; is the angle between the hyperplanes H,, and H,,. A reduced
word for w € W is an expression w = s;, - -+ s;, for w as a product of simple
reflections which has p minimal. The following lemma describes the inversion
set in terms of the simple roots and the simple reflections and shows that if
w = s;, - 8;, is a reduced expression for w then p = {(w).

Lemma 1.2 ([1, VI §1 no. 6 Cor. 2 to Prop. 17]) Let w = s; ---5s;, be a
reduced word for w. Then

R(w) = {ai,, 8i,Qi, 15 -+ Si, " Sy, }-

The Bruhat order, or Bruhat-Chevalley order (see [20, §8 App., p. 126]),
is the partial order on W such that v < w if there is a reduced word for v,
v = 8j +*+8j, which is a subword of a reduced word for w, w = s; ---s;,,

(that is, sj,,...,s;, is a subsequence of the sequence s;,,...,s;,).

1.2 The affine Weyl group

For A € P, the translation in X is

tx: bg — bR
v oz (1.10)

The extended affine Weyl group W is the group
W = {wty | we W,\ e P}, (1.11)

with multiplication determined by the relations
txty =tayy, and  tyw = wty, (1.12)

for \,p € P and w € W, and so W is a semidirect product of W and the
group of translations {¢, | A € P}. It is the group of transformations of by
generated by the s,, a € R™, and ¢y, A\ € P. The affine Weyl group Wag is
the subgroup of W generated by the reflections

Sak: bp — br in the hyperplanes

(1.13)
Hop={z€by| (z,a") =k}, a€R'EkeZ
The reflections s, can be written as elements of W via the formula
Sak = tkasa = Sat—ka' (114)

The highest short root of R is the unique element ¢ € R such that the
fundamental alcove

A=Cn{zeb;| (z,p") <1} (1.15)
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is a fundamental region for the action of W,¢ on hi. The various fundamental
chambe{s for the action of W,g on b are w™'A, w € W,g. The inversion set
of we W is

R(w) = {Hpg | Hoy is between A and w A} and {(w) = Card(R(w))
is the length of w. If w € W and X € P then

Lwty) = D [\ ) + x(wa)l, (1.16)

a€R*

where, for a root 3 € R, set x() =0, if € RT, and x(8) =1,if 5 € R".
Continuing Example 1.1, we have the picture

H(p = Ha1+a2 HOél Hoeg,O = Hozz
X T T ART AT AT TN TN T Ha1+2a2,3
|
Hoq—l—ag,—l N4 N,
/ﬁ _ Ha1+20<2,2
Ha2,5 | N |
Ha1+a2,—2 \|// \\|/ H
D i i Calind” (Gl Gl taliliy /K Hai+2az,1
Ha2,4 | \/\ | I \/\/ I
Ha1+a2,—3\l/ Ny NI \|/
K » A 1o 4+202,0 = Hay 120,
Hap3 AP 1y ¢TI
Ha1+02,—4 NV ) g \\l 7 \\l
I 4/1< - —/¥\— - . /—(( - < Ha1+2a2,71
a2 1N s N7
H | A AN |
artaz,—5 ', N H
= k==K ——¥— — 89— — = — X — — A L1 +200,—2
az,l 1N s = =
| | Ha1+a2,1 - HLp,l - Hao
______ K_ - XX Ha1+2a2,73

Let
Hyy=Hy,1 and  sp = 5,1 =135y = Spt_g, (1.17)
and let H,,,...,H,, and sq,...,s, be as in (1.9). Then the walls of A are
the hyperplanes H,,, H,,, ..., H,, and the group W,s has a presentation by
generators sg, S, . . ., S, and relations

2 . .
s; = 1, for 0<i<n,
8iSjSi = 8jSiSj -, i # 7, (1.18)
N—— N—
m;; factors my; factors

where 7/m;; is the angle between the hyperplanes H,, and H,,.

Let wg be the longest element of W and let w; be the longest element of
the subgroup W, = {w € W | ww; = w;}. Let ¢¥ = c1a + -+ + ¢, Then
let

Q={ge W | 6(g) =0} = {1} U{g; | ¢; =1}, where g¢;=t,,wwo, (1.19)
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(see [1, VI §2 no. 3 Prop. 6]). Each element g € €2 sends the alcove A to itself
and thus permutes the walls H,,, H,,,...,H,, of A. Denote the resulting
permutation of {0,1,...,n} also by g. Then

gsig = Sq(), for 0 <7 < n, (1.20)

and the group W is presented by the generators sg, s1,...,s, and g € 2 with
the relations (1.18) and (1.20). In the setting of Example 1.1, W, = {1, s2},
W, = {1,s1}, w1 = s9, wy = s; and wy = 81825182, and p¥ = 207 + a3 so
that ¢y =2, co =1 and Q = {1, g2} = Z/27, where gy = t,,52515.

1.3 The affine Hecke algebra

_ Let g be an indeterminate and let K = Z[g, ¢ ']. The affine Hecke algebra
H is the algebra over K given by generators T, 1 < i < n, and 2*, A € P, and

relations
LLT =TT, foralli#j,
mij ;;ctors mi; ?;ctors
T?=(q—q T + 1, for all 1 <@ < n,
(1.21)

ot = ghat = M for all A\, u € P,

17)\ _ :Esi)\

2 M = Tyrs* + (q — qil)ﬁ, foralll1<i<n, € P.
— 7 (073

An alternative presentation of H is by the generators T,,, w € W, and relations
,_Z“'wl]jw2 = Tw1w2, if é(wlwg) = E(wl) + E(wg),
T Ty = (q—q )Ty + Tou, ifl(s;w) <lw) (0<i<n).

With notations as in (1.10-1.20) the conversion between the two presentations
is given by the relations

T,=T, T,

i, ifw e Weg and w = s;, - -+ 8;, is a reduced word,

P

Ty, = 2T, , , for g € Qasin (1.19),

(1.22)
=T, T," if \=p—vwith pu,ve Pt

T,, =T ¢af¢’, where ¢ is the highest short root of R,
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1.4 The Kazhdan—Lusztig basis
The algebra H has bases

{2 T, |we W, A€ P} and {T,2*|weW,\ec P}

The Kazhdan Lusztig basis {C’, | w € W} is another basis of H which plays
an important role. It is defined as follows. o )
The bar involution on H is the Z-linear automorphism : H — H given

by

=q! and T_w:TuT_l17 for w € W.

|@|

For0<i<n,T; =T, "'=T,—(qg—q ') and the bar involution is a Z-algebra
automorphlsm of H. Ifw = Si, + -+ 8i, is a reduced word for w then, by the
definition of the Bruhat order (defined after Lemma 1.2),

T, = Til'“ﬂpzT_ﬁ‘“EITgl”'ﬂ;l
= (El—(q_q_l))"‘(ﬂp_<q_q :Tw+zavava
v<w
with a,, € Z[(q — ¢ )]
Setting 7; = ¢T; and t = ¢2, the second relation in (1.21)
T? =(q—q ")T;+1 becomes 77 = (t—1)7;+1. (1.23)

Let 7, = ¢"™T,, for w € W. The Kazhdan-Lusztig basis {C", | & € W} of H
is defined [6] by

C., =C' and C =t (Z wTy> : (1.24)

Yy<Kw

subject to Py, € Z[t2,t72], Py, = 1, and deg,(P,,) < s(l(w) —l(y) —1). If

Pyw = q—(f(w)—f(y))pyw (1.25)
then
Y Puwd" VT, =) Py T, = Ty, (1.26)
y<w y<w y<w
with
Pyw € Z[q,q7"], Puw=1, and py, € ¢ 'Zg7", (1.27)

since deg, (P (q)q ")) < f(w) — £(y) — 1 — (U(w) — £(y)) = —1. The
following proposition establishes the existence and uniqueness of the C! and
the pyy,.
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Proposition 1.3 Let (W, <) be a partially ordered set such that for any u,v €
W the interval [u,v] = {z € W | u < z < v} is finite. Let M be a free Z[q, q~"]-
module with basis {T,, | w € W} and with a Z-linear involution : M — M
such that

Gg=q ' and T,=T,+ ZanTv.

v<<w
Then there is a unique basis {C", |w € W} of M such that
(a) C, =Cl,,
(b) C, =T, + prTv, with pyw € ¢ Zq7Y] for v < w.
v<w

Proof The p,, are determined by induction as follows. Fix v,w € W with
v < w. If v =w then p,, = pww = 1. For the induction step assume that
v < w and that p.,, are known for all v < z < w.

The matrices A = (ayy) and P = (py,) are upper triangular with 1’s on
the diagonal. The equations

Tw = T:w = Z ATy = Z Ao Uiio L and
ZpuwTu = CIIU - C_{U = vawTv = ZmauvTua

imply AA =1Id and P = AP. Then

f — Z auzpzw = ((A - 1)?)1“11 = (AF - F)uw - (P — ﬁ)uw = Puw — Fuwa

u<z<w
is a known element of Z[q, ¢7'];

=Y fugd" suchthat f=(puw— Pyw) = Puw — Puw = —f-

kEZ

Hence f,, = —f_;. for all k € Z and py,, is given by p,., = Z fqu. O

k‘EZ<0

The finite Hecke algebra H and the group algebra of P are the subalgebras
of H given, respectively, by

H = (subalgebra of H generated by T,...,T,), (1.28)
K[P] = K-span {z* | X € P}, where K = Z[q,¢7'],

and K-span{z* | A € P} denotes the set of K-linear combinations of elements
2* in H. The Weyl group W acts on K[P] by

wf = Zcu:vw“, forw e W and f = Zcux“ e K[P]. (1.29)

HEP neP
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Theorem 1.4 The center of the affine Hecke algebra is the ring
Z(H)=K[P]Y = {f €K[P] | wf = f for allw € W}

of symmetric functions in K[P].

Proof If z € K[P]" then by the fourth relation in (1.21), Tz = (s;2)T;+ (q—
g (1 —z7) Y2 — 5;2) = 2T; + 0, for 1 < i < n, and by the third relation
in (1.21), za* = 2’2, for all A € P. Thus z commutes with all the generators
of H and so z € Z(H).
Assume
z= Z c,\vkaTw € Z(ﬁ)

AePweW

Let m € W be maximal in Bruhat order subject to ¢, # 0 for some v € P.
If m # 1 there exists a dominant p € P such that ¢y4,_mum = 0 (otherwise
Cytp—mp,m 7 0 for every dominant p € P, which is impossible since z is a finite

linear combination of 2*T},). Since z € Z(H) we have

z=x Fzat = E cAvwm/\_“wa“.
\ePweW

Repeated use of the fourth relation in (1.21) yields

Tyr' = Y dy,a'T,

vePveW

where d,,,, are constants such that dy, ., = 1, d,.,, = 0 for v # wp, and d,, = 0
unless v < w. So

z = g c,\vkaTw = g g c,\ﬂudwx)‘_““Tv

AePweW AePweW vePveW

and comparing the coefficients of 277, gives cym = Cyip—mummpm. Since
Cytp—mpum = 0 it follows that c,,, = 0, which is a contradiction. Hence
2=\ eprz* € K[P].

The fourth relation in (1.21) gives

2Ty =Tz = (5;2)T; + (g — ¢ )2’
where 2/ € K[P]. Comparing coefficients of z* on both sides yields 2’ = 0.

Hence 2T; = (s;2)T;, and therefore z = s;2 for 1 <i < n. So z € K[P]".
U
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2 Symmetric and alternating functions and their
g-analogues

Let 17 and ey be the elements of the finite Hecke algebra H which are
determined by

12=10 and T;1y = ql,, for all 1 <7 < n,
ed=¢p and Tieg=(—q ')go, forall1<i<n.

In terms of the basis {7, | w € W} of H these elements have the explicit
formulae

1 1
1, = qg(w)Tw , and gp=-——+ —q _é(w)Tw , 2.1
0 WO((]Z) u;/ 0 W()<q72> u;/( ) ( )

where Wo(t) = Y-, o t“). (To define these elements one should adjoin the
element Wy(¢*)™! to K or to H.) The elements 1y and ¢ are g-analogues of
the elements in the group algebra of W given by

1 1
1=— w and &= — (—1)" ey, (2.2)
w2 2%

and the vector spaces 1oH1, and and eyH1, are g-analogues of the vector
spaces (more precisely, free K = Z[q, ¢"!]-modules) of symmetric functions
and alternating functions,

K[PIY = {feK[P]|wf=fforallwecW}=1K[P], (2.3)
A = {feK[P]|wf=(=1)"§forallwe W} =cK[P)],

respectively, where the action of W on K[P] is as defined in 1.29.
For ;1 € P let the orbit Wy and the stabilizer W, of 1 be defined by

Wyp={wu|weW} and W,={weW |wp=p}

Then define

44
my, = Z 2 = |W‘ 1z, a,= Z(—l)g(w)wx“ = |W|ea*,
YEW ‘ “l weW (2.4)

MM = 10%“10, AM = 805[}“10 .

Theorem 2.2 below shows that the elements in (2.4) which are indexed by el-
ements of P™ and P** form bases (over K) of K[P]", A, 10H1y, and g H1,.
This will be a consequence of the following straightening rules. The straight-
ening law for the M, given in the following Proposition is a generalization of
[11, III §2 Ex. 2].
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Proposition 2.1 For v € P let m,, a,, M,, and A, be as defined in (2.4).
Let a; be a simple root and let 1 € P be such that d = (u, o)) > 0. Then

Mg, = My, Qs = —Qy, and Agp = —A,.

Letting t = ¢, M, = M, if d =0, and if d > 0 then

|d/2—1]
=1
N (t — D27 1M,,_(a/2)a;, if d is even,
0, if d 1s odd.

Proof The first two equalities follow from the definitions of my and a, and
the fact that ¢(s;) = 1.

Let u € P such that d = (u, o) > 0. Since x* + " is in the center of the
tiny little affine Hecke algebra generated by T; and the x7, v € P,

A+ A = eoat +2%)1 = q teo(at + 25T,
= ¢ leoTi(a" + 2%")1g = —q 2eo(a + 2°")1,
_q_z(Au + Asm)~
Thus A, + A, = 0 which establishes the third statement.
If d = 0 then, by definition, M, = M,,,. If d > 0 then multiplying

the fourth relation in (1.21) by 15 on both the left and the right (and then
multiplying by ¢~!) gives

Lo(e™ — )1y = ¢~ (g — ¢ D1 [ ) ¢
o(x )l =q (¢—q¢ )l 1 ) O

Subtracting the same relation with p replaced by p — «; gives
10($sm _ I“)lo _ 10(x8iu+oéi _ xﬂ_ai)lo

Silh __ gl peSiptQg H—oy
(1— g1, (x Tt —x +z ) 1,

1 -z
= (1 — ¢ H1o(—a* T — 2M)1,.
So
103;-3#110 = q7210£€“10 — ].0.1"“70[1‘ ]_0 —+ q7210.flfsi'u+ai ]_0.

Inductively applying this relation yields the result. The first cases are

M,, if (u, ) =0,
quM,“ if <:u’ O‘;/> =1,
M,y = q_2Mu + (q_2 — D)M—q;, if (u, ) =2,
¢ M, + (= 1)M,—q,, if (p, o)) = 3,
q_zMu + (q_4 - 1)MH7CH + q_2<q_2 - 1>MH*20@7 if <:u’7 Oé;/> =4.
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Proposition 2.1 implies that, for all u € P and w € W,
Mo = My, Gy = (—1)a,, and A, = (1)@ A, (2.5)
Theorem 2.2 Let K = Z[q,q7']. As free K-modules
K[P)W  has basis {my | \ € P}, 19H1y has basis {My | A € P*},

A has basis {a, | p € Pt+}, eoH1ly has basis {A, | p € Pt}

Proof Since {2*T), | 4 € P,w € W} form a basis of H the elements M, =
19z+1y = ¢ " @192, 1, i € P, span 10P~110. By Proposition 2.1, if p is on
the negative side of a hyperplane H,,, that is, if (u,«) < 0, then M, can
be rewritten as a linear combination of M., such that all terms have v on the
nonnegative side of H,,. By repeatedly applying the relation in Proposition
2.1, M, can be rewritten as a linear combination of M, such that all terms
have v on the nonnegative side of H,,,..., H,,, that is, v € P* = PN C,
where C' = {z € R" | (z,a)) >0 for all 1 <i < n}.
If A € Pt using the fourth relation in (1.21),

1 1
M, = 121y = —— qe(“’)wa’\l = — qé(“’)dm 2T, 1
0 0 WO (qz) ;V 0 WO (qz) %U Y 0
1 f(w) () 1
= ¢"dyy 2"y = ———c ) dyaT 1y,
Wo(tﬂ)% ! Wo(qz)z; !

where d,, , and d,, are some polynomials in Z[q, (¢—q¢~")] such that d, ,» = 1 so
that d,,» = 1. Furthermore d, = 0 unless ~ is in the convex hull of the points
in the orbit WA. Thus the coefficient of 0 in M, is Wy(g?)*¢*(*) and the
coefficient of 27T, can be nonzero only if v > wg\. Thus the My, A € PT, are
linearly independent.

The proof for the cases of m,,, a, and A, is easier, following directly from
(2.5), the fact that C' = {x € R" | (z,) > 0 for all 1 <i < n} is a funda-
mental chamber for the action of W, and that if p € PT\P** then (u, ) =0
and a, = —a,,, = —a,, in which case a, = 0 (similarly for A,). O

For \ € P define the Schur function, or Weyl character, by

_ Do _ 1
Sy = 2, where p=3 Z a. (2.6)
a€ERT

The straightening law for a, in (2.5) implies the following straightening law
for the Schur functions. If 4 € P and w € W then, by (2.5) and the definition
of s,

(—1)6(1”)5 _ (_1)£(w)au+p _ Qw(ptp)—ptp
o

= Swopu
a a ’

0 (2.7)

p

where wopu=w(u+p)—p.
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The dot action of the Weyl group W on hj which is appearing here, w oy =
t_pwtop = (t;)wt,p, is the ordinary action of W on bi except with the
“center” shifted to —p. For the root system of type Cs, in Example 1.1, the

picture is

H, H,
]7@1+a2 51(7 b C ]Jdg l7a1+a2 : 1 C ]7@2
81820 SQC
Ha1+2a2 Ha1+2a2
818251(7 528167
81828182(7 828182(7 e : °o
the orbit Wp the orbit W o 0

The following proposition shows that the Weyl characters s, are elements
of K[P]". The equality in part (a) is the Weyl denominator formula, a gen-
eralization of the factorization of the Vandermonde determinant det(z} ) =
[Ticijen(®i — 2;). In the remainder of this section we shall abuse language
and use the term “vector space” in place of “free K = Z[q, ¢~!] module”.

Proposition 2.3 Let PT, P™" K[P]Y and A be as in (1.7) and (2.4) and
let p be as in (1.8).

(a) If f € A then f is divisible by a, and

a, =’ H (1 —279)

a€ERt
(b) The set {s) | A\ € P} is a basis of K[P]".
(¢) The maps

. KPPV — A
and f — a,f
SX = Qxtp

p+t ., pt++t
A — A+p
are a bijection and a vector space isomorphism, respectively.
Proof Since s; takes a; to —a; and permutes the other elements of R,
p—(p,a))a; = sip=p—

and so
(p,a)y =1, foralll<i<n.

(2
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Thus the map Pt — P** given by A — X + p is well defined and it is a
bijection since it is invertible.

Let d = 2 [ cpr (1 — 27) = [ cps (@ — 27%/2). Since s; takes a; to
—a; and permutes the other elements of RT, s;d = —d for all 1 < ¢ < n and
so wd = (—1)"®)d for all w € W. Thus d is an element of A.

If o € RT andf:Zcux“ € A then

neP
Z cutt = f=—s.f = Z —c ot
pnepP neP
and
f= cu(ah — ziet).

(V)20

Since (1 — =) is divisible by (1 — 2~®) it follows that z# — z%# =
(1 — z=e)e) i divisible by (1 — 2~%) and thus that f is divisible by
(1 —27) for all @ € R*. Since the elements (1 — x~%) are relatively prime in
the Laurent polynomial ring K[P] and x” is a unit in K[P], f is divisible by d.
Since both f and d are in A, the quotient f/d is an element of K[P]".

The monomial 2” appears in a, with coefficient 1 and it is the unique term
z# in a, with g € P*. Since d has highest term 2” with coefficient 1 and a, is
divisible by d it follows that a,/d = 1. Thus a, = d, the inverse of the map @
in (c) is well defined, and ® is an isomorphism.

Since {ay;, | A € PT} is a basis of A and the map & is an isomorphism it
follows that {s) | A € P*} is a K-basis of K[P]". O

2.1 The Satake isomorphism

The following theorem establishes a g-analogue of the isomorphism ® from
Proposition 2.3(c). The map ®; in the following theorem is the Satake isomor-
phism. We shall continue to abuse language and use the term “vector space”
in place of “free K = Z[q, ¢~'] module”.

Theorem 2.4 The vector space isomorphism ® in Proposition 2.3(c) gener-
alizes to a vector space isomorphism

o Z(H)=K[PY 2% Z(H)1ly=1H1, 2% eH1,
f — f1o — A, flo
SH — sxlg — A)\+p-

Proof Using the third equality in (2.5),

50%10 =gy <Z (_1)€(w)xw)\> 0= Z (_1)5(w)Aw>\ — |W| A)\_

weWw weW
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By Proposition 2.3(c) and Theorem 1.4, sy € K[P]" = Z(H), and so
1 1 1
Ap531g = —=e0a,1053 19 = 18 = — 1o = Axip
pSxto ’W‘anp 0Sxlo |W’€oap5>\ 0 ’W‘€oa,\+p 0 Ap

Since {s | A € P*} is a basis of K[P]"V = Z(H) and {Ay,, | A\ € Pt} isa
basis of egH 1, the composite map
Z(H) 2 Z2(N)1, — 1,01y 2% 01,
f o fly = fly — A, f1
s Sxlpg = sxlp — Ay,

is a vector space isomorphism. Il
If pe P let
W,={weW|wp=p} and W,(t) = Z ), (2.8)
weW,

In particular, if g = 0, then Wy = W and W(¢) is the polynomial that appears
in (2.1).
The Hall-Littlewood polynomials, or Macdonald spherical functions, are de-

fined by

1 1—tax™@

P,(x;t) = TAD Z w(x’“‘ H m), for p € P. (2.9)
AT wew aER+

Then m,, = P,(x;1) and, using the Weyl denominator formula,

P.(z;0) = Zw( o ) (2.10)

weW P HaeR+(1 - I_a)

1 a
- E (—1){pgrte = 242 —
a a
P wew P

and so, conceptually, the spherical functions P,(z;t) interpolate between the
Schur functions s, and the monomial symmetric functions m,,.

The double cosets in W\W /W are Wt,W, X € PT. If A\ € PT let n,
and m) be the maximal and minimal length elements of W¢,\W, respectively.
Theorem 2.9 below will show that under the Satake isomorphism the Weyl
characters sy correspond to Kazhdan Lusztig basis elements C,  and the poly-
nomials P,(x;¢?) correspond to the elements M, = 1gz*1,. More precisely,
we have the following diagram:

®, :  Z(H)=K[P|Y — Z(H)l,=1H1,
f — J1o
W) G 2
Wld ) b (asa) M,
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where wy is the longest element of WW. The following three lemmas (of inde-
pendent interest) are used in the proof of Theorem 2.9.

Lemma 2.5 Let t,, a € R*, be commuting variables indexed by the positive
roots. For A € Pt let P\(x;t) be as in (2.9), Wy as in (2.8), and define

11—t
ta) = A —
D= (I )
weWw a€ERT
and

weWy  acR(w)

where, as in (1.5), R(w) = {a € RT | wa < 0} is the inversion set of w. Then

(a) Ra(z;ts) Z UrpSp,s
pepP+t
with uy, € Z[t,], ux, =0 unless p < A, and uyy = Wi(t,).

(b) Py(z;t) = Z CauSp, With ¢y, € Zt], ey = 0 unless 1 < A, and cyy = 1.

peP+

Proof (a)If EC RT let

tp = Hta and aE:Za,

a€cl ()

and let a,, be as defined in (2.4). Using the Weyl denominator formula, Propo-
sition 2.3(a), and the second equality in (2.5),

weW aER*
v (w Loy 110
weW P HaeR+(1 - x_a)
- Y (w 11 (1—tax_°‘)>
P wew a€Rt
= — Z Z (=1)\Plg g te—on
P wew ECRT
= — Z l ‘tEa)\erfaE = Z <_1)‘E|tE3)\faE>
@p ECR+ ECR+

which shows that R, is a symmetric function and wy,, € Z[t,].
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By the straightening law for Weyl characters (2.7), sy—a, = 0 O S)x_q, =
(=1)"™s, with
veEW and € Pt such that pu+p=v"'(A+p—ag).

Let E¢ denote the complement of F in R*. Since v permutes the elements of
R,

v A+ p—ag) = viIAFu! (% Za—%Za)

acEe acE
_ -1 1 1 _ -1
= v /\+<§ E O‘_ig oz)-v A p—ap,
ackFe acF

for some subset F' C R™ (which could be determined explicitly in terms of £
and v). Hence

p=v""N+p—arp—p=v'A—ap<v A\ (2.12)

This proves that uy, = 0 unless 1 < A.
In (2.12), p=Aonly if v™'A=Xand p=p—ar =v"'(p — ag) in which

case
p—ozE:v<%Za>:p— Z a and FE = R(v).

aeR* aER(v)
Thus
UAA(ta) - Z tR(v)-

1}71€W)\
(b) Set t, =t for all « € RT. Applying (a) with A = 0,

Rowit) = 3w ( 11 %) — Wo(t). (2.13)

Let W be a set of minimal length coset representatives of the cosets in W/Wj.

Every element w € W can be written uniquely as w = uv with v € W* and
ve W,y (see [1, IV §1 Ex. 3]). Let

Z(\) ={a e R"| (A a") =0},

and let Z(\)® be the complement of Z(\) in RT. Then v € W, permutes the
elements of Z(\)¢ among themselves and so

R = Yl ) e 11 )

ueW? aEZ(N)e veWy acZ(N)
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where the last equality follows from (2.13). Thus there is an element Py(z;t) €
F[P] where F is the field of fractions of Z]t,| such that

Rty =wat) Y u | T % — Wy () Py (2 ).

ueWwi acZ(N)e

Since R, is a symmetric polynomial (an element of Z[t][P]V), Py\(z;t) €
F[P]". Since t only occurs in the numerators of the terms in the sum defining
P, in fact P, is a symmetric polynomial with coefficients in Z[t]. It follows
that all the uy, appearing in part (a) are divisible by W,(¢) and

1
Py\(z;t) = ZC’\“S“’ where ¢y, = W Unp
ner
are polynomials in Z[t] such that ¢y =1 and ¢, = 0 unless g < . O

Lemma 2.5 has the following interesting (and useful) corollary, see [13].

Corollary 2.6 Let p and " be as in (1.8) and (1.1), respectively, and let
Wo(t) be as defined in (2.8).

weW a€Rt
1 — lee)+1
(b) H 1 — tpaY) = Wo(t)

Proof Part (a) follows from Lemma 2.5 (a) by setting A = 0 and specializing
to=tforalla € RT.

(b) Applying the homomorphism

ZIE[P] — Z[tH)

l')‘ — t(fpv)\>

to both sides of the identity in (a) for the root system R = {a" | « € R}

gives
1— t powaY)+1
Z H ( tlpwaY) ) (214)

weW aeRt+

IfweW,w#1, and w = s;, ---s;, is a reduced word for w then w () =
(siyw) oy, € R(w) and so

there is an o € RT such that wa" = —a.
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Then
H 1— t(p,wav)+1 1— t(ﬂa—%\-/l>+1 1— t(p,an)Jrl
waV = —ay - waV
ot 1 — tlpwa) 1 — #lp—aip) a1 tpwa)
wa;ﬁfail
1 — t—1+1 1 — t(p,wozv)—l-l
T 11 T —towary = V-

acR
woz;éfail

Thus the only nonzero term on the right hand side of (2.14) occurs for w = 1.
0

Lemma 2.7 For A € P" let t) € W be the translation in ) and let ny be the
mazimal length element in the double coset Wt \W. Let My = 1oz*1q, as in
(2.4). Then

- Wol(g™®) -
ol ppy(q?) - 0L = T ety
! ole) Wil(g™?) ’ xGWt/\Wq |

in the affine Hecke algebra H.

Proof Let A € P*. Let W) = Stab(\) and let wy and w) be the maximal
length elements in W and W), respectively. Let m) and n, be the minimal
and maximal length elements respectively in the double coset Wt W. For
each positive root « the hyperplanes H,;, 1 < i < (A, a"), are between the
fundamental alcove A and the alcove ¢ty A and so

(ta) =Y (\a¥)=2(\p"), wherep’ =1 o’ (2.15)

a€eR* a€Rt
Since my = ty(wywp) and ny = ty,rWo,

l(my) = L(ty) — L(wowy) = L(ty) — (L(wg) — L(w))), and

0(ny) = L(ty) + L(wo) = £(my) + £(wg) — L(wy) + (wp). (2.16)

For example, in the setting of Example 1.1, if A = 2wy in type C5, then
Wy ={1,s1}, wy = 81, wy = 1828182, L(t\) = 6, £(my) = 3, and £(ny) = 10.
Labeling the alcove wA by the element w, the 32 alcoves wA with w € Wi, W
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make up the four shaded diamonds.

Hw = Hao,tas

Ha1+2a2

Hoq—l—az,l - Hgo,l - Hao

The double coset W, W

Then

102l = 173,10 = 10T msmwows Lo = L0Tm, Tugws Lo
qf(wo)*f(wA)loT 1

£(wo)—L(wx)—L(my)
q § : w
= ( qé( > )Tm)\ 10_

weW

Let W2 be a set of minimal length coset representatives of the cosets in W/Wj,.
Every element w € W has a unique expression w = uv with v € W? and
ve W, If veW, then

vmy, = vt\wawy = tavwawy = my(wyw) Tvwawe = my (wy wy lvwyw).

Since conjugation by w, and conjugation by wy are automorphisms of W), and
W respectively taking simple reflections to simple reflections,

((v) = L(wy  wy fvwywy)
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Thus

O(wo)—
10271, = 4 Z ¢, Z T, q" T, 1

ueWA veWy

20(wo ) —26(wy ) —E(tx)
q
( 3 g )

u€W
Z qe(v)Tv ]-0

-1, -1
vewy Twy - Wixwwo

—20(wx)—£(tx)
- q (Zq ) T, W) 1

u€W
—20(wy)— t)\)W( )

_ 4 A £(u) £(my) £(w)
= /R DV 7 Ty
Wol@ ol ® (ZW ) 2

_ o(ty) WA ) Z 4T,
W< ).TEWt)\W
ft)\ +ZnA
q ( ( Z Y—8(ny) >
Wo(g?) W ceWtr W
£(wo)
q q énA
O

Lemma 2.8 Let wq be the longest element of W and let A € P.

(a)  ar = Tpx T,

(b

) 1_0:1001’”(1%:80.
(c) IfzeZ[PY then z = z.
)

(d) g w0 Ay, = ¢ Ay,
Proof (a) If A € PT then woty = tyoawo, L woty) = L(wy) + £(t)) and
U(tworwo) = L(twen) + (wp). Thus,

TuoTir = Tunts = Truprun = TrugnTugs  for A € P*.

Let A € P and write A = p — v with u,v € P*. Since —wou € P and
—wov € PT,

A= T =TT, =TT T Tl

wov T W

—woA\—1p—1 woA—1
= Ty (x70%) Tyy = Twex"™ T,
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(b) For 1 <i < n,

— — 9 _

13 = 10 and Elo = T-il].() - q_l]-(] = q]-_OJ

(2

€2 =75 and Tigo = T; 'eg = —qgg = —q " 'E0.

These are the defining properties (before 2.1) of 1y and gy and so 1y = 1y and
g9 = £p-

(c)Ifz=3 cpeuat € Z[P]Y, then, since ¢, € Z, ¢, = ¢, and, by (a),

= _ —— 0 wopurp—1 __ wo -1 _ —1
zZ= Cprh = E Cu Lo M Ty = T, <E Cu® )Two = T2 Ly

HEP neP HEP
since z € Z[P]" is W-invariant. Finally, since Z[P]" C Z(H), z is central,
and Z = T,,, 2T, = 2.

(d) By (a), (b) and the third equality in (2.5),

m = e(wO)€O$A+p10 - q€(w0)50Twoxw0()\+p)T1;0110

q
— qf(wo) (_q—l)f(wo)goxwo()\-f—p)]_Oq—g(’wo) — (_q—l)f(wo)
q

—E(wo)AA_i_p‘

Auwo(rtp)

0

The following theorem is due to Lusztig [10]. Part (a) was originally proved
in a different formulation by Macdonald [12, (4.1.2)].

Theorem 2.9 If u € P let W, be the stabilizer of u and let W,(t) be as in

(2.8).

(a) Let p € P. Let P,(x;t) be the Macdonald spherical function defined in
(2.9) and define M, = 1px*1y as in (2.4). In the affine Hecke algebra H,

———= . P,(z; q_2)10 = M,.

(b) For A € Pt let ty € W be the translation in X and let ny be the mazimal
length element in the double coset Wt \W. Let s, be the Weyl character
and let C), be the Kazhdan-Lusztig basis element as defined in (2.6) and

(1.26), respectively. In the affine Hecke algebra H,

q_e(wO)WO(qQ) -s531g =

ny"’
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Proof (a) By Theorem 2.4 there is an element Py € K[P]" such that Py1¢ =
192*1,. To find P, first do a rank 1 calculation,
x}\ _ xsi)\
et = (e T - ) (50 ) 10
— %
L (@ 1-a e (1-a) )
l—a +qat — qrt — g7 lat + g7 et 0
— (1_1‘7&2‘) ( q 1.17)\ o qxsl)\ al‘i‘qx +q 1 sA)lo
= (1—a27 ) 2 Mg — ¢ ™) + Mgt — gz 7)1,

—1,.—a; —ay —1 i
—_ l“ 1 x 1 {—
(—q q ca 4 q :c‘”)‘) 1,

1 — el % — 1

_ gl
_ (+s) (L) L.

1 —ax—
Since 1 is a linear combination of products of T} it can also be written as a
linear combination of products of ¢=! + T;. Thus 1p2*1, can be written as a
linear combination of terms of the form

. fleail . *11‘—04@
(1+s4) (qq—al> (14 s,) (qq—_%> 2.

11—z 1 1 — %
Thus B B
192’1y = P\1g, where P\ = Z Y wey,
weW

and the ¢, are some linear combinations of products of terms of the form
(g —q'x®)/(1 — x*) for roots @ € R. Since P is an element of K[P]",

P, = Z w(a:w‘))‘wgcwo),
weW

where wy is the longest element of W. The coefficient wyc,,, comes from the
highest term in the expansion of

1
1, = ¢? ()T, + lower terms
DA )

in terms of linear combination of products of the (¢71 + T;). If wo = s4, -+ - 8;
is a reduced word for wq then

mewy = o, (T o, ()
WO(QQ) I —am i 1—ax %
_ qe(wo) N (q e e Tt ) (q B q_lx_sip”'sigaiQ)
Wo(q2) " ' 1 — g~ Sip 2% 1 — g SipSinQiy

q—q 'z
11— %

—Q

P

[0}

£(wo) =1, 1 —
q q—q q x
_ wO H

—— Wy
M/ 2 _ - _ a
O(q ) a€ERT I—w a€ERT 1 v

b
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by Lemma 1.2 and the fact that ¢(wy) = Card(R™*). Thus, since ¢~ 2/®0)Wy(¢?) =

Wol(qg™?),
= 1 1—q_2x_a
Py=— w [ 2 _ .
e S (2 )

(b) Since Wy(q~2) = ¢~ 24“IW;(¢?), Lemma 2.8 gives

g Wy (g?)saLo = ¢"“OWo (g *)5x1e = ¢ W (¢*)saTo.

By Lemma 2.5(b),
sv= Y Ku(t)P(x:t),

neP+

where K, (t) € Z[t], K,(t) = 0 unless u < A and K,,(t) = 1. Thus, by part
(a) and Lemma 2.7

¢ OWo(P)saly = Zq WOl Wo(¢*) (g %) Pu(; 47210

pepPt+

Z Z C] nM)KA (C]_Q)Tx,

pnepPt zeWt, W

where the polynomials K, (¢~?) € Z[g?] are 0 unless u < A and Ky, (¢7%) = 1.
Hence ¢~“0) W (¢?)s51, is a bar invariant element of H such that its expansion
in terms of the basis {T, | w € W} is triangular with coefficient of T, equal
to 1 and all other coefficients in ¢~'Z[q™!]. These are the defining properties
(1.26)-(1.27) of C, . O

3 Orthogonality and formulae for Kostka—Foulkes
polynomials

Let K=Z[t]. If f =3 ,cp fuz" € K[P] let

f= quﬂfu, and [f]; = fo = (coefficient of 1 in f). (3.1)

pnepP

Define a symmetric bilinear form
1 —a®
() KIPLXKIP| =K by {f,0)e= [ng ] . (32)
“Specializing” t at the values 0 and 1 gives inner products

(,) : K[P] x K[P] - K and (, )1 K[P] x K[P] - K

with

(f,9)0 = = [fg H(l - xa)] and  (f,g)1 = %[fg]l- (3.3)

| | aER VV|
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Proposition 3.1 Let A and € P™. Then

1 1

(my,mu)1 = IR |5Au, (8x,8u)0 = Oy, and (P\,P,), = mé)\u‘

Proof Letting WA denote the W-orbit of A, the first equality follows from

%% %%
Wl may s = L2l S~ gy, 26, MRl Sy

|W| yeWAveWpn |W’ YEWAX
If \,u € PF,
(500 = = [asRasd = = |
Sy, S = —\a,5,0,3,|1 = — |t L,0a
A ou/0 |W| poAUpopull |W| AtpUptpll
1 v w —v w
- (W] Z (=1)40) (=14 [=vOFp) glute))
v,weW
1 v
= 5MWZ( 1)@ (1) = g,,,
veW

giving the second statement.

By Lemma 2.5(b) the matrix K~ given by the values (K~'),, in the
equation

Py(z;t) = Z(K_I)Ausm

I

has entries in Z[t] and is upper triangular with 1’s on the diagonal, that is,
(K'Y =1and (K1), =0 unless p < A. Since Py(z;1) = my the matrix
k~! describing the change of basis

my = Z(k_l)/\usuv

m

is the specialization of K=! at t = 1 and so k! has entries in Z and is upper
triangular with 1’s on the diagonal. Then the matrix A = K~'k~! giving the
change of basis

t) = Z A)\zzm/u (34)

<A

has Ay, € Z[t], Axy =1, and Ay, = 0 unless pu < A
Let QT be the set of nonnegative integral linear combinations of positive
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roots. Then

1 - 1—a°
neono(I=5) = So (= 11 {0)
a€ER wew a€RT
= Y wla JJO+> (- 1)xm)>
weWw a€ERT r>0
I
weW ve@t
vet wew
where ¢, € Z[t] and ¢y = 1. Hence
I —a®
Pz )W, (1) H 1 — 0o (Wlmy, + Z Byymy = Z Byymy, (3.5)
a€ER V> Y2

with B, € Z[t] and B, = |W,|.
Assume that A < p if A and p are comparable. Then, by using (3.4) and
(3.5),

<P>\7Pu>t = ﬁ <PA7PMWu(t> H 11__;U;>

a€ER
1
— .0 <Z AA,,m,,,ZBWm,y> .
K v<A Y>u 1

Since Ay =1 and B, = |W,| the result follows from (my,m,); = [Wy| 10y,
U

The following theorem shows that the spherical functions Py(z, t) are uniquely
determined by the triangularity in (3.4) and the orthogonality in the third
equality of Proposition 3.1.

Theorem 3.2 Let K = Z[t]. The spherical functions P\(z;t) are the unique
elements of K[P]W such that

(a) Py=my+ Z A)\um;m

pu<A

(b) <PAaPu>t:0if)\7AM-
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Proof Assume that the P, are determined for u < A. Then the condition in
(a) can be rewritten as
P,\ =my + Z C)\#PH,
n<A
for some constants C'y,. Take the inner product on each side with P,, v < A,
and use property (b) to get the system of equations

0_ m)\a t+ZC/\,u <m)\>pu>t+CAu<PI/7PV>t-
p<A
Hence ( )
—\Mx, I'y)¢
Ch = ———, f h v < A,
\ Py Py or each v
and this determines P,. O

Remark 3.3 (a) The inner product (, ), arises naturally in the context of p-
adic groups. Let S' = {z € C | |z| = 1} and view the 2*, A\ € P, as characters
of

»: T — C*

— 1 ;
T = Hom(P,S") wia s — (V).

(3.6)
Let ds be the Haar measure on T normalized so that

(z*, 2y = /Tx’\(s):p“—(s)ds = O (3.7)

Letting Q, be the field of p-adic numbers, Macdonald [12, (5.1.2)] showed that
the Plancherel measure for the p-adic Chevalley group G(Q,) corresponding
to the root system R is given by

Wo(p~! 1—2%(s
du(s) = |$| ) 1T - _p_1x<a()s). (3.8)

aER

The corresponding inner product is

(71 fa _1_/f ,u 7 fO?”f,gEC(T),

where C(T) is the vector space of continuous functions on 7.

(b) The inner product ( , ); arises naturally in another representation theoretic
context. The complex semisimple Lie algebra g corresponding to the root
system R acts on S(g*), the ring of polynomials on g, by the (co-)adjoint action.
As graded g-modules the characters of S(g*) and the subring of invariants
S(g*)9 are

greh(S(g") = (Hﬁ) (Hl_lm> and o
i=1 acR 3.9

T

1 1 7 1
reh(S(e7)) = [l = Wo(t)H1—t’

i=1 =1
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where r is the rank of g and dy, . . . , d,. are the degrees of the Weyl group W. Let
‘H denote the vector space of harmonic polynomials. An important theorem
of Kostant [8, Theorem 0.2] gives

1
11—t

S(g") = S(g")*@H, and thus, grch(H) = Wy(t) H (3.10)

acER

If L(\) denotes the finite dimensional irreducible g-module of highest weight
A € PT then L(\) has character s, and using the notation of (3.2),

> dim(Homg(L(X), L(p) @ H*)t* (3.11)
1
- <3A,SMW0(t)H1_ma>

1 —txe
a€ER

= Wy(t) [&\EH 1_xa] = Wo(t)(sx,su)e,

where H* is the vector space of degree k& harmonic polynomials.

3.1 Formulae for Kostka—Foulkes polynomials

For A € P let s, denote the Weyl character, as defined in (2.6). The
Kostka—Foulkes polynomials, or q-weight multiplicities, Ky,(t), \,p € PT, are
defined by the change of basis formula

sv= Y Ku(t)Pu(x;t), (3.12)

nePt

where the Macdonald spherical functions P,(z;t) are as in (2.9).
For each o € R" define the raising operator R,: P — P by

RoA=A+a, anddefine (Rg -+ Rg)sy = Sry, Ry (3.13)

for any sequence [, ..., of positive roots. Using the straightening law for
Weyl characters (2.7),

Sy = <—1)€(W)Swou, where wopu = w(ﬂ + P) —p,

any s, is equal to 0 or to s, with A € P*. Composing the action of raising
operators on Weyl characters should be avoided. For example, if «; is a simple
root then (since (p,a)) = 1) 5_a, = —Ssi0(—as) = —Ss;(p—ci)—p = —5—a, iving
that s_,, = 0 and so

R (Ra;5-24;,) = Ra;5—a; = Ra, - 0 =0, whereas (Ra, Ra,)S—20; = So = L.
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Let Q' be the set of nonnegative integral linear combinations of positive
roots. Define the g-analogue of the partition function F(v;t), v € P, by
1
H = Z F(vy;t)2”, and F(y;t) =0, if v € Q. (3.14)

1—tx
a€Rt yeEQT

Theorem 3.4 Let \,p € P*. Let t, be the translation in p as defined in
(1.10) and let n,, be the longest element of the double coset Wt,W. Let W, (t)
be as in (2.8), P,(x;t) as in (2.9) and let (, ), be the inner product defined in
(3.2). Fory,w e W let P,, € Z[til] denote the KazhdanfLusztig polynomial
defined in (1.26)-(1.27) and let p¥ = 3> cpr @

(a)  Kxu(t) = Wi(t) (sx, Pul@; 1))

1—-1tR,

a€ERt

(b)  Kyu(t) = coefficient of sy in < H ! > Sy

(€ Folt) = 3 () @R+ p) — (et p)i )
weW
(d)  Kau(t) =trme0P, (t71), for any x € Wt,W.
Proof (a) This follows from the third equality in Proposition 3.1 and the
definition of K, (t).
(b) Since
1
1 — tx™

P, (z;t)W,(t)

1—ta@ 1
( 1—2z a) H 1 — tx>
a€R* a€R

1
_ xu-&-p

wew 2P [[peps (1 —27)(1 _ma))
:aiz;v DA (H <1_1t$a>fﬁ“+p) |

a€Rt

it follows that
Ky, (t) = (coefficient of P,(x;t) in sx) = (sx, W, (t)Pu(x;t)):

— <s,\, W, (t) Pu(z;t) H 1 —1tx"‘>

a€ER
: : 1 L(w) 1 +
= coefficient of s, in — Z (—1)"™w H <ﬁ>xﬂ p
apwEW’ a€Rt -

1
= coefficient of s, in <H T )Su-

a€ERt
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()

1 1
Ky, (t) = coeflicient of s, in — E (—1)z(w)w<H <T)x“+p>
a — tx®
weW

P a€ERT

= coefficient of ay,, in Z(—l)z(w)w ( Z F(fy;t):ﬂ):z:““

weW yeQ+

= coefficient of 27 in Z(—l)g(“’)w Z F(y;t)xytrte
weWw yeEQT

= D (D)™Fw\+p) = (n+p)it),

weW
since w™H(y + (1 + p)) = A + p implies v = w(A + p) — (1 + p).

(d) Let A € P*. By Theorem 2.9 and Lemma 2.7

> VTP (T = G, = Wo(g)salo

TNy

= ¢ IW(¢") Y Koula ) Puleig )1

HSA

—tw o Wo(q?
= g X O)WO(QZ)ZKAM(Q Q)MM;L

p<A W/'L(q_Q)

= Y K@ Y @,

s €Wt W
Hence, for p < XA and z € Wt,W,
Ku(q7?) = ¢~ VP, ().
By (2.15) and (2.16),
C(ny) = £(na) = €(t) + Lwo) — (E(Ex) + Llwo)) = 2(u, p7) = 2(A, p7),

and the result follows on replacing ¢~2 by t. O

With the notation of Remark 3.3(b), it follows from Theorem 3.4(a) and
so = Py(x;t) that

KA,O(t) = Wo(t) <S)\, Po(:L‘; t)>t — Wo(t) <S)\, 30>t
= ) dim(Homg(L(\), HF)t*. (3.15)

k>0
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This is an important formula for the Kostka—Foulkes polynomial in the case
that p = 0.
Let J C {a,...,a,} be a subset of the set of simple roots and let

b = R-span{a; € J}, R;=RNbY, Ry = Rt Nb5, (3.16)

Wy={(s;|aj€J), and P} =P Ay, (3.17)

so that Ry is a parabolic subsystem of the root system R, R} is the set of
positive roots of Ry, W is the Weyl group of Ry, and P is the set of dominant
integral weights for R;. Let h+ be the orthogonal complement to h* with
respect to the inner product (,) so that

b*=b5 @by,  and write g =y +py, (3.18)

to denote the decomposition of an element p € h* as a sum of p; € h% and
N
Ly € by

Proposition 3.5 Let J be a subset of the set of simple roots {a, ..., a,} and
use notations as in (3.16-3.18). Then, for \,u € PT,

. ) 1
K, (t) = coefficient of sy in H iR, Z K,\Jw(t)sAJW#,
a€(RT\RY) AjEPT

where Ky,,,(t) are Kostka-Foulkes polynomials for the root system R;.

Proof By the third equation in the proof of Theorem 3.4(b), K},(t) is the
coefficient of a4, in

s (11 (o))

weW 1 a€ER*
= T Z(—l)é(w)w Z (—1)" @)y
Wil wew veW;
( H 1 )( H 1 >x/u+pru§+p§
1—ta> 1—txe
a€(RT\RY) o a€RT o
]_ ]. 1 1L
— —1)¢w) < ) KT +pT
|WJ|Z( ) w 11 1— o))"
weW QG(R+\R‘}‘)
1
Z (_1)4(17)1} ( H a)xw—l—m
UEWJ OCER}_ 1 o t"]j

1 w 1 Lol
N |WJ| Z(_l)g( w ( H 1—t$a>mMJ+pJ Z KAJNJ(t)aAJ‘H’J

weW a€(RT\RY) \jEPT
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where the last equality follows from Theorem 3.4(b) applied to the root system
R;. Expanding ay,+,, gives that Ky,(t) is the coeffient of a,, in

X B Sy (T )

AsEPT wew a€(RT\RY)

veW
1 . .
= T 2 K () 3 () e 3 (=)
! AJEP}_ weW veW
( H 1 );puﬁp#ﬂﬁp]
1 — tae
a€(RT\RY)
w 1 N
= 2 B | (T =)
)\JEPjr weW OLG(R*‘\RJJF)

from which the desired formula follows by dividing by a, and converting to
raising operators (as in the proof of Theorem 3.4(b) above). O

4 The positive formula

In the type A case Lascoux and Schiitzenberger [9] have used the theory
of column strict tableaux to give a positive formula for the Kostka—Foulkes
polynomial. In this section we give a proof of this formula. Versions of this
proof have appeared previously in [17] and in [2].

The starting point is the formula for K,(¢) in Theorem 3.4(b). To match
the setup in [11] we shall work in a slightly different setting (corresponding
to the Weyl group W and the weight lattice of the reductive group GL,(C)).
In this case the vector space hi = R" has orthonormal basis €1, ..., &,, where
g; = (0,...,0,1,0,...,0) with the 1 in the ith coordinate, the Weyl group
is the symmetric group S, acting on R™ by permuting the coordinates, the
weight lattice P is replaced by the lattice

2" ={(v,.-.,m) | n€Z}) and 6=(n—-1,n—-2,...,2,1,0) (4.1

replaces the element p. The positive roots are given by Rt = {¢; —¢; | 1 <i <
j < n} and the Schur functions (defined as in (2.6)) are viewed as (Laurent)
polynomials in the variables x1,...,x,, where z; = 2% and the symmetric
group S, acts by permuting the variables. If w € S, then (—1)“®) = det(w)
is the sign of the permutation w and the straightening law for Schur functions
(see (2.7) and [11, I paragraph after (3.1)]) is

$u = (—1)"s,0,, where wopu=w(u+35) -4, (4.2)
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for w € S, and u € Z". The set of partitions
P={(\,...;.\p) €Z" |\ =2\, 20} (4.3)

takes the role played by the set P*. Conforming to the conventions in [11] so
that gravity goes up and to the left, each partition p = (uq,...,p,) € P is
identified with the collection of boxes in a corner which has p; boxes in row
1, where, as for matrices, the rows and columns of y are indexed from top to
bottom and left to right, respectively. For example, with n =7,

(5,5,3,3,1,1,0) =

For each pair 1 < < j < n define the raising operator R;;: Z" — Z" (see
(3.13) and [11, I §1 (1.14)]) by

Rijju=p+ei —e; and define  (Riyj, -+ Riyj))sy = Sk, ~Ryyns (4:4)

for a sequence of pairs i; < ji,...,4 < j;. Using the straightening law (4.2)
any Schur function s, indexed by p € Z™ with p; +- - -+ p, = 0 is either equal
to 0 or to £s) for some A € P. Composing the action of raising operators on
Schur functions s, should be avoided. For example, if n = 2 and s; denotes
the transposition in the symmetric group Sy then, by the straightening law,
S(0,1) = —Ss1((0,1)+(1,0)—-(1,0) = ~S(1,1)~(1,00 = —S(0,1) giving that s¢,1) = 0 and
SO
Ri5(Ri25(-1,2)) = Ri25(00,1) = Ri2-0 =0, whereas

(R%2)s(-12) = Sa0) = T1 + T2,
With notation as in (4.2) and (4.4) we may define the Hall-Littlewood
polynomials for this type A case by (see Theorem 3.4(b) and [11, IIT (4.6)])

1
Q# = < H 1——t_R”> S,u; for all 1% € Zn) (45)

1<i<j<n

and the Kostka—Foulkes polynomials K,,(t), A, € P, by

Qu=Y_ Ky(t)sx. (4.6)

4.1 Insertion and Pieri rules

Let A\, u € Z™ be partitions. A column strict tableau of shape A\ and weight
w1 is a filling of the boxes of A with py 1s, us 2s, ..., p, ns, such that
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(a) the rows are weakly increasing from left to right,

(b) the columns are strictly increasing from top to bottom.

If T is a column strict tableau write shp(T') and wt(T') for the shape and the
weight of T" so that

shp(T) = (A1,...,Ay), where \; = number of boxes in row ¢ of 7', and
wt(T) = (p1, ..., pn), where u; = number of isin 7.

For example,

Ll1f1f1f1]1]1]2]2]

T= [2][2]2]2]3]3]4
3(3|3[4(4|4]|5 has shp(7T) = (9,7,7,4,2,1,0)
415|5]6 and wt(T) = (7,6,5,5,3,2,2).
6|7
7

For partitions A and p and, more generally, for any two sets S, W C P write

B(A) = {column strict tableaux T' | shp(T) = A},
B(X), = {column strict tableaux T" | shp(T') = A, wt(T") = pu}, (4.7)
B(S)yy = {column strict tableaux 7" | shp(T") € S, wt(T) € W}.

Let A and v be partitions such that v C A (as collections of boxes in a
corner, that is 7; < A; for 1 < i < n). The skew shape X/~ is the collection of
boxes of A which are not in v. The jeu de taquin reduces a column strict filling
of a skew shape A/v to a column strict tableau of partition shape. At each step
“gravity” moves one box up or to the left without violating the column strict
condition (weakly increasing in rows, strictly increasing in columns). Once
an empty box on the northwest side of the skew shape starts to move it must
continue and exit the southeast border of the skew shape before another empty
box can start its exit. The jeu de taquin is most easily illustrated by example:

L [1]1]2]2] L 1] 2]2]

111213 NN 111213

" 13]4]4 [2]3]4]4

[2]

T [1]1]2]2] C 11 2]2]
. 1] [2]3 . 1[2] |3

2344 2344

T [1]1]2]2] T [1]1]2]2]
. 123 . 1]2]3]4

2344 2[3]4
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1] [1]2]2] 1[1] [2]2]
L 1/2]3]4 . 1[2]3]4
213[4 23[4
"Ti1[2] [2] - [1[1]2]2]
N 1[2]3]4 L 1[2]3]4
2|3]4 2|3]4
1[1]1]2]2] 1[1]1]2]2]
— 2|3[4 N 2/2[3[4
213[4 314
1[1]1]2]2] 1[1]1]2]2]
L 2/2[3[4 L 2|2[3[4
3] |4 34

In this example A = (6,4,4,1), v = (2,1,1) and the resulting column strict
tableau is of shape (5,4,2). The result of the jeu de taquin is independent of
the choice of order of the moves ([3, §1.2, Claim 2] which is proved in [3, §2
and §3].

The plactic monoid is the set B(P) of column strict tableaux with product
given by

Ty

- ==
|
|
|

T =Ty = jeu de taquin reduction of I}
Th

Because the result of the jeu de taquin is independent of the choice of the order
of the moves this is an associative monoid.
If z is a “letter”, that is, a column strict tableau of shape (1) = [J, then

x * T is the column insertion of x into T, and (4.8)
T % x is the row insertion of x into T. '

The shape A of P = T % x differs from the shape v of T' by single box and so
if v and P are given then the pair (7, x) can be recovered by “uninserting”
the box A/ from P. The tableaux P and T differ by at most one entry in
each row. The entries where P and T differ form the bumping path of x. The
bumping path begins with z in the first row of P and ends at the entry in the
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box A\/~. For example,

1[1]1]1]2]2] ;;;i1|2|
213[3]4 . —

4l4]4]5 2445 ’
6] 6

where the bold face entries form the bumping path.
The monoid of words is the free monoid B* generated by {1,2,...,n}. The
weight wt(w) of a word w = wy - - - w,, is

wt(w) = wt(wy - -~ wy,) = (f, -+, ftn) where p; is the number of ¢’s in w.

For example, w = 3214566532211 is a word of weight wt(w) = (3,3,2,1,2,2).
The insertion map
B* — B(P)

Wy - W, > Wpk---xW,

(4.9)

is a weight preserving homomorphism of monoids.

A horizontal strip is a skew shape which contains at most one box in each
column. The length of a horizontal strip A/ is the number of boxes in A/7.
The boxes containing X in the picture

XIXIX[X]X[X
A= %i form a horizontal strip A/~ of length 11.

X

For partitions 1 and v and a nonnegative integer r let

y® (r)=(r)®~ = {partitions A | A/v is a horizontal strip of length r},

(B(r) ® B(y)), = {Pairs v T ’ :uihBtgzm)t’ Yv;te(qu—v zzvt(T) = u }4'10)
, v e B(r),T € B(y)
(B(v)®@ B(r), = {PMS Tov ’ such that wt(v) j wt(T) = p } ’

The following lemma gives tableau versions of the Pieri rule [11, I (5.16)]. The
second bijection of the lemma is proved in [3, §1.1 Proposition], and the proof
of the first bijection is similar (see also [2, Propositions 2.3.4 and 2.3.11]).

Lemma 4.1 Let vy, pu, 7 € P be partitions and let r,s € Z>y. There are bijec-

tions
(B(r)@ B(v))y «— By®(r))u
v T — vxT and

(B(v) ® B(s)), «— B(y®(s))s
T®u — Txu .
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4.2 Charge
Let B(P)s = U B(P)>;, where

1<ign

Wt(b) = (:ula v 7/’671) has
B(P)si = { column strict tableaux b | p3 =--- = p;-1 = 0 and

Let i* =|i]i[---]i] be the unique column strict tableau of shape (k) and

weight (0,...,k,0,...,0), where the k appears in the i th entry. Charge is the
function ch: B(P)s — Zx( such that

(a) ch(®) =0,
(b) if T € B(P)>(iy1) and T xi** € B(P)s; then ch(T * i) = ch(T),
(c) if T' € B(P)s; and x is a letter not equal to i then ch(xxT') = ch(T*x)+1.

The proof of the existence and uniqueness of the function ch is presented
beautifully in [7].

Theorem 4.2 (Lascoux-Schiitzenberger [9], [17]) For partitions X\ and p,

K(t)= Y 0,

beB(N)y

where the sum is over all column strict tableauz b of shape A and weight .

Proof The proof is by induction on n. Assume that the statement of the
theorem holds for all partitions p = (p1, ..., i,). We shall prove that, for all

partitions (o, 1) = (fto, 11, - - -5 i), @ (uo,n) has an expansion

Quo) = Z tCh(p)Sm (4.11)

PEB(V) (g, m)

Beginning with the expression (4.5),

1
Quuow) = ( ” 1—tR--> S(po.m)
ij

0<i<j<n

- 1 1
= (II—=" I II +—5 50w
(jzl 1- tROj) <1<i<j<n 1- tR”)
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Proposition 3.5 shows that this particular product of raising operators can be
composed and so, by applying the definition of the Kostka—Foulkes polynomials
(4.6),

o 1
Quuow) = (H 1_—%) D Kou()so

7j=1 AeP
_ r k1 k
= E Ku(t) § t § Roi -+ RonS(uon)
AEP r€lsqo  k1r-okn€lzg

= ZKM(t) Z t Z S(po+rA=(k1,....kn))

AEP T€Z>0 ki kn€Zxq

Let v = A — (k1,...,k,) be such that A/~ is not a horizontal strip (usually =y
isn’t even a partition). Let m be the first place a violation to being a horizontal
strip occurs, that is,

let m be minimal such that \,, — k,, < A1

For example, in the followng picture, v = XA — (3,1,2,2,1,0) and m = 3.

X[ XX

. I
7 |

[x]

Let s,, be the simple transposition in the symmetric group which switches m
and m + 1 and define

¥ =8n07, sothat suirry) = —Suotry)-

Then 4 = X\ — (ky, ..., ky) with \; — k; = \; — k;, for i # m,m + 1, and

A — km = Amat — kmg1 — 1, and g1 — a1 = Am — ki + 1.

Thus 4 = Ama1 — kma1 — 1 < A\py1 and so A/7 is not a horizontal strip. This
pairing v < 7 provides a cancellation in the expression for @), ) and thus

Quop) = Z Z t"K\u(t) Z S(uo+r,y)

A Z €P
EPrelzo Ag’v@(r)

_ r

= § : E , t" K () (o)
YT AEP

Aev®(r)



366 Kendra Nelsen and Arun Ram

where v ® (r) is as defined in (4.10). Then, by the induction assumption,

Quuo) = Z Z Z ) S(po+r,7)

v, )\673 B
7T ra(r) beEB(N\)u

- Z Z e (Ho+7,7)>

with B(y® (r)), as in (4.10). By the first bijection in Lemma 4.1 this can be
rewritten as

r+ch(vxT
Quuogy = Z Z D s gt

Vo v@TE(B(r)®B(Y))u

= Z Z tT+Ch(’U*T*0#0))S(MQ+T,’y) (4 12)

7r vTE(B(r)®B(Y))u

- Z Z e oreel) (Ho+77)

Y,r vRTE(B(r)@B(Y))u

where the last two equalities come from the defining properties of the charge
function ch.
Let v@ T € (B(r) ® B(7v)), and let

p=T%0"%v and v =shp(T *0" *v).
Let d be such that
po+r+d>vg and po+r+d—1< v,
where, by convention, vy = po + r. If d > 1 define 7 and 7 by
="y yVa—a, o+ +d—1, 9. .,%) and pg+7+d—1=r41,

so that, if s; denotes the transposition (7,7 4 1) in the symmetric group, then
(1o +7,%9) = (80 * Sa—384-254-3" " 50) © (fto +1,7), and

Sorra) = (DX S0 475) = —S(ur)- (4.13)
fo+7 | .
: X | X T
v = ol 11
x| x [ x )
x [ x[x
fo + T _
X | % T
_ ~ d
[x[x]x
x [ x [x
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Note that 4 = v and 7 = r.

Case 1: d > 1 and (ug +7,7) = (o +7,7%).  In this case (4.13) implies
S(uo+ry) = 0-

Case 2: d>1and (ug+1,7) # (o +7,5). Then

vEY®(uo+r) and v E€F® (o +7)

Row uninserting the horizontal strips v/ and v/¥ from p, by using the second
bijection in Lemma 4.1, produces pairs

T@u=T® (0" xv) € (B()® Blo + 7)) (uo)

and .
T®u € (B(y)® B(ko + 7)) (o)

respectively. Consider the ¢ = g 4+ r bumping paths in the tableau p which
arise from 7' % u. These begin with the letters u; < ... < up of u and end at
the boxes of the horizontal strip v/~. Similarly, there are (= Lo + 7 bumping
paths in p arising from T = @. Note that

(a) since u = 0 v begins with po 0s the leftmost pop bumping paths in T u
travel vertically, directly down the first py columns of p, and

(b) in rows numbered > d the bumping paths for T+ coincide exactly with the
bumping paths for 7" % u, since the horizontal strips v/v and v /4 coincide
exactly in rows > d and these paths are obtained by uninserting the boxes
in this portion of the horizontal strip.

o]0 | [x]x]

D= ) xf «—— row d — 1
|

3

bumping paths in 7" x u

a1 |l2 | [x[~]

p= ) 1 +—rowd—1
|

X

bumping paths in 7" % @

Suppose there are k bumping paths which end in rows > d. The picture above
has k£ = 6 and corresponds to Case 2b below.
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Case 2a: If po+ 7 > po + r then the k bumping paths which end in rows > d
are the same or slightly “more left” in T * @ than in T % u. Since the first po
bumping paths cannot be any “more left” than vertical, this forces the first pg
entries of @ to be 0 so that @ = 0" % ¢ for some v € B(7).

Case 2b: 1f pg+7 < po + r then the £ bumping paths which end in rows > d
are the same or slightly “more right” in 7 * @ than in 7  u. We shall analyze
how these k paths pass through row d — 1 in T % u and in T * @. Divide row
d — 1 into four disjoint regions, left to right:

Region 1: the leftmost o boxes of row d-1,

Region 2: the boxes which do not have a cross in them in 7T % u

(and are not in Region 1),

Region 3: the boxes which have a cross in them in 7" % v but not in T * 1,

Region 4: the boxes which have a cross in them in both T % u and T * @.
Of the k£ bumping paths of T * u which end in rows > d the first g of these
pass through Region 1 in 7" u, and the others (k — o of them) pass through
Region 2. Since the total number of bumping paths (the number of crosses)
in T @ is (o + 7 and there are some bumping paths of T % @ which end in row
d—1 (r — 7 of these), k < po + 7. Thus

k— o < po+7—po < po+7+ (d—1) — pg = Card(Region 2),

since Card(Region 1) = pp and Card(Region 1) + Card(Region 2) = po + 7 +
d — 1. Thus there must be a box in Region 2 of T % u that does not have a
bumping path passing through it. All the bumping paths of 7" * v which pass
through row d — 1 to the left of this box remain the same as bumping paths
for T % @ and the first o of these begin at an entry 0 in the first row of p.
Thus, as in Case 2a, the first ug entries of u are 0 so that u = 0"° % v for some
v € B(T).

So,

TRu=T® (0" «0), witho®T € (B(F)® B(F)),,

and the terms in the last line of (4.12) corresponding to the pairs v ® T and
v ® T cancel each other because

Tx0" sxp=T%0"%¢ and S(uo+ryy) = TS(uo+7,3)-

Case 3: d=1. Since yop+r+1> v and v € v ® (ug + r) the horizontal
strip v/~ has its boxes in each of the first pg + r columns and

V:<V07V1>"'7Vn):(M0+r7717"'77n):(M0+r77)'

Row uninsertion of the horizontal strip v/ from the column strict tableau p,
i.e. using the second bijection in Lemma 4.1, recovers the pair 7' ® (0" % v)
and shows that 0“0 % v is the first row of p.

In conclusion, in the last line of (4.12) the terms corresponding to Case 1
vanish, the terms corresponding to Case 2 cancel, and the remaining Case 3
terms give formula (4.11), as desired. O
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