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A ‘Second Orthogonality Relation’ for Characters of Brauer Algebras

ARUN Ram

1. INTRODUCTION

In a first course in representation theory, one usually learns that there are two
important relations for characters of a finite group, the first orthogonality relation and
the second orthogonality relation. When one moves on to study algebras which are not
necessarily group algebras it is not clear, a priori, that the study of characters would be
fruitful, and one encounters various problems in developing a theory analogous to that
for finite groups. It is true, however, that the characters of algebras, such as the
Iwahori—-Hecke algebras, the Brauer algebras and the Birman—Wenzl algebras, are
well-defined and important. An analogue of the first orthogonality relation for
characters of such algebras is understood and appears in [4]. In the Appendix of this
paper, we show that the second orthogonality relation for characters makes sense for
split semisimple algebras (although it is no longer an orthogonality relation).

This paper is concerned with the ‘second orthogonality relation’ for the Brauer
algebras. We derive this relation explicitly. After a talk on the results in Sections 1 and
2 of this paper at University of Bordeaux I, R. Stanley sketched an alternate proof of
the results in Section 1 using the combinatorial interpretation of the characters of the
Brauer algebra and tools from his paper [11]. Here we present the proof of Stanley’s as
a theorem purely about the combinatorial rule for the characters of the Brauer
algebras. Then we study the naturally occurring weight space representations of the
Brauer algebra. Putting the three facets together, we are able to give a new derivation
of the irreducible characters of the Brauer algebras.

I would like to mention, here in the Introduction so that it gets noticed, that I have
been unable to compute the second relation for characters explicitly in either the case
of the Iwahori—Hecke algebra of type A or the case of the Birman—Wenzl algebra.
Computing these relations could be useful in the study of representations of quantum
groups and/or g-differential posets and/or g-Hermite polynomials.

This paper is organized as follows.

In the Appendix we give an argument that there is an analogue of the second
orthogonality relation for characters of a finite group in the case of any finite-
dimensional algebra with a non-degenerate trace form (in particular, a split semisimple
algebra). The purpose of this is to show that the study of the second relation for
characters makes sense for the case of the Brauer algebra. We have put this material in
an Appendix as it is primarily algebraic in nature and is not needed in the rest of paper.

In Section 2 we derive by an enumerative argument the explicit form of the second
relation for characters of the Brauer algebra. It is interesting to note that the formulas
can be expressed in terms of products of certain Hermite polynomials. In Section 3 we
give an application of our result of Section 2 to Weyl group symmetric functions of
types B, C and D. Diaconis and Shahshahani [5] have also applied these results in their
study of the eigenvalues of random orthogonal and symplectic matrices. In Section 4
we present Stanley’s proof of analogous ‘second relation’” formulas for certain numbers
determined by up—down border strip tableaux.

In Section 5 we show that the ‘second orthogonality relations’ of Sections 2 and 4
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can be used to give a new proof of the fact that the numbers determined by weighted
sums of up—down border strip tableaux actually are the characters of the Brauer
algebras. This proof is in the same vein as Frobenius’ original derivation of the
characters of the symmetric groups. This approach also gives a new proof of the
Frobenius formula for the Brauer algebras. This proof is quite elementary and the
‘second orthogonality relations’ are used in place of the Weyl character formula which
was used in the original proof [9].

2. THE BRAUER ALGEBRA

An m-diagram is a graph on two rows of m vertices each, one above the other, and
2m edges such that each vertex is incident to precisely one edge. The number of m
diagrams is

(2.1) m -1l =C2m—-1)2m—3)---3- 1

We multiply two m-diagrams d; and d, by placing d, above d, and identifying the
vertices in the bottom row of d; with the corresponding vertices in the top row of d,.
The resulting graph contains m paths and some number 7y of closed cycles. Let d be the
m-diagram the edges of which are the paths in this graph (with the cycles removed).
Then the product d,d, is given by d,d, = x”d. For example, if

e N —e 2 >
dle/.Jé anddzzé.).i/.

e N T
dd, = <> % = %, //[/
— e T

Let x be an indeterminate. The Brauer algebra B, (x) is the C(x)-span of the
m-diagrams. Diagram multiplication makes B,,(x) an associative algebra. By conven-
tion By(x) = B(x)=C(x). For each complex number « € C one defines a Brauer
algebra B,,(a) over C as the C-linear span of the m-diagrams, where the multiplication
is given as above except with x replaced by a. Although we shall state our results for
the algebra B,,(x), unless otherwise stated, they also hold for the algebras B,,(«)
(replacing x by a).

Under the above multiplication the m-diagrams with only vertical edges form a
symmetric group S, inside the Brauer algebra. For 1 <i<m — 1, let

LR N G O AR L N O

The elements of the set {G;, E; | 1<i<f—1} generate B,,(x).

then

Cycle type. We associate to each m-diagram a partition 7(d) € B,, called the cycle type
of d. To do this, we traverse the diagram d in the following way. Connect each vertex
in the top row of the diagram d to the vertex just below it in the bottom row by a
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dotted line. Beginning with the first vertex (moving left to right) in the top row of d,
follow the path determined by the edges and the dotted lines and assign to each edge
the direction that it is traversed. Returning to the original vertex completes a cycle in d.
If not all vertices in d have been visited, start with the first not yet visited vertex in the
top row of d and traverse the cycle adjacent to it. Do this until all vertices have been
visited. The diagram

s . R R
23) a- \

Lt s b s

has three cycles. The first is on vertices 1, 2,3, 6,5, the second on vertices 4,7,8,9,11,
and the third on vertices 10, 12, 13, 14. To each cycle of d, let U(c) denote the number
of edges of ¢ directed from bottom to top and D(c) the number of edges of ¢ directed
from top to bottom. The positive integer

t(c)=[U(c) = D(c)|

is called the type of the cycle c. As c runs over all cycles of d, the sequence of numbers
t(c), arranged in decreasing order, is denoted 7(d), the type of the diagram d. In
example (2.3) above, 7(d) = (3, 1, 0).

Characters. If d, is an mj-diagram and d, is an m,-diagram, then d,®d, is the
(m, + m,)-diagram obtained by placing d, to the right of d,. Let E denote the
2-diagram

(2.4) E =
and let v,, denote the m-diagram
For a partition w = (u1, 2, ..., u,), let y,=v, ®vy,& --Qy,. We have the

following theorem from [9].

(2.5) TueorEM. If d is an m-diagram and X is a character of B,,(x), then

X'x(d) = X(E*" ®,,),

where w is the partition formed by the nonzero parts of the type 1(d) = (012" - - +)
of the diagram d and r and h are given by h = (m — |u|)/2 and r = h — my,.

The trace X5,. Given a diagram d on m dots, number the dots in each row from left to
right 1,2,...,m. Let Q5, be the set of diagrams on 2m dots which have edges
connecting 1—»2,3—4,...,(2m —1)—2m in the lower row. Let

B%, =C(x) —span{d € Q%,}.
B,,,(x) acts on BY, by left multiplication. The trace of the action of B,,,(x) on B%, is

given by
(2.6) Xana)= 3 ad

de Q3

ds
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where a € B,,,(x) and ad‘d denotes the coefficient of the diagram d in the product ad.
For each pair of positive integers k, m, define fi(m) as follows:

i & is odd £ )_{0, if m is odd,
1S 00 e (m—1Nk™,  if m is even;
n/20 m
if k is even, fem)= > <2S>(2s — DK,
s=0

where (m — 1)!! is defined by (2.1). If u = (1"2">- - -) is a partition, then define

(2.7) f(p) = Elfk(mk)

(2.8) THEOREM. Let X5, be the trace of the action of B,,,(x) on BS,. Then:
(1) if w is a partition of 2m —2h, 0 <h <m, then

X2®m(E®h ® y;.;,) = xhXZmeZh(’Y/.L);
(2) if w=(1"12" - ) is a partition of 2m, then

X5n(vu) = f (),
where f(u) is given as in (2.7).

Proor. Let u = (wy, Mo, ..., M) be a partition of 2m — 2k for some 0 <h <m, and
let a=E®'® Y, on B%,. Let d e %, Since a contains horizontal edges connecting
1-2,3—4,...,(2h —1)—2h in the upper row we know that ad|,+ 0 only if d also
has edges connecting 1—2,...,(2h —1)—2h in the upper row. In this case we have
that d = E®"®d,, where d, is a diagram on 2m — 2h dots. We obtain that

Xl EZ"Qy,) = > adly= > (E¥"@y,)(E® ®d,)|geren

deQ deQ

2m 2m

=x" E '}’;Ldl ’d = xﬁl(ZIn*2h(’YI.L))
dleggn—zh
proving (1).
Let uw=(uy,...,pm,) be a partition of 2m. We shall refer to the factors vy, in
Vi =V, @ - - Q,, as the cycles of y,. If d is a diagram in Q5 then, since Vo is @
permutation,

1, ityd=d
d :{ s " ’
Yudla 0, otherwise.
Thus
(2.9) X5.(7,) = (number of d e Q5,, such that y,d = d).

Let d € Q5, and assume that y,d = d. Imagine that vy, is placed above d in order to
compute the product y,d. We shall say that a horizontal edge in the top row of d which
connects a dot which is underneath a cycle v, in vy, to a dot which is underneath a
cycle vy, in vy, to a dot which is underneath a cycle v, in vy, is an edge connecting the
cycles vy, and vy,. Then one must have that:

(1) d does not contain any horizontal edges in the top row which connect cycles of vy,
of different length.
(2) If there is an edge in d connecting two cycles of length k, then all dots under the
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first cycle must be connected to dots in the second cycle. There are exactly k different
possible configurations of edges on these cycles:

P
AL AT L

*—e o—o o—o

(3) If d contains an edge which connects a cycle to itself, then the cycle must be even.
(4) There is exactly one possible configuration of edges under a single cycle of even
length which is connected to itself:

AN s

w-—oo—oo—o

Suppose that w contains m, cycles of length k.

Case 1. k is odd. Then it follows from (3) that m, must be even and the cycles of
length k& must be connected in pairs. There are (m, — )!! = (m; —1)(m; —3)---3-1
ways to pair the cycles and k ways to connect each of these m /2 pairs. This gives a total
of

(mye — DK™ = fi(my.)
choices for the edges in d under the cycles of length k in vy,,.

Case 2. k is even. By (2), we may choose any even number, 2s, of cycles to be
connected in pairs and pair them in (25 — 1)!! ways. By (2) again, each of the s pairs
may be connected in k ways. By (4), each of the remaining cycles is connected to itself
in a unique way. Summing over s, this gives a total of

Hi@s )i2s = ke = imo)

choices for the edges in d under the cycles of length k in y,,.
Thus, the number of d € Q%, such that y,d = d is II; fi(m,), where u = (1272 - )
and the theorem follows from (2.9). O

The trace of the regular representation. Let Q,, denote the set of all diagrams on m
dots. By definition, these diagrams form a basis of the Brauer algebra B,,(x). B,,(x)
acts on itself by both left multiplication and right miltiplication. The bitrace of these
two actions is given by

btr,,(ai, a,) = Z a1d612|d,

deQ,

where aq, a, € B,,(x) and a lda2] « denotes the coefficient of the diagram d in the
product a,da,. We shall refer to btr,, as the bitrace of the regular representation of the
Brauer algebra.
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(2.10) THEOREM. Let ¢, b be diagrams in Q,,. Then
btr,,(c, b) = x5,.(c ®b),
where X5, is given by (2.6).

Proor. First we describe a simple bijection between Q,, and Q5. Let d € Q,,.
Number the vertices of the top row of d, left to right, with 1,2,...,m and the vertices
of the bottom row of d, right to left, with m + 1, m +2, ..., 2m. Arranging the vertices
of d into a single row of 2m vertices, in order, determines a diagram ¢(d) of Q5. In
some sense, ¢ takes a diagram, splits it down the horizontal centerline, puts a hinge on
the right-hand side, and opens it up to be twice as long.

fd = >I< then ¢(d) =

It is clear that ¢ is a bijection.
The following computation is now immediate:

btrm(C’ b) = 2 Cdb|d = 2 (C ®Q)¢(d)|¢(d) = X?m(c(g)Q))

d<Q, #(d) =2,

where ¢ is the same diagram as b except turned over. The fact that x5,(c®q) =
X5,.(c®b) follows from Theorem (2.5) and the fact that the cycle type of b is the
same as the cycle type of g. ]

(2.11) CoroLLARY. Let pu = (1"2">---) be a partition of m — 2k, 0<k <[n/20 and
let v=(1"2"---) be a partition of m—2¢, 0<{¢<[n/20 Let w\Uv denote the
partition given by u U v = (10"Fm20m2m) .y Then

btr, (E®*®1y,, E?®v,) =x*""f(n Uv),
where f(u U v) is given by (2.7).
(2.12) CoroLLARY. Let p = (1"2"2-- ) be a partition of m —2h, 0<h <[ /20 and
let o = (2™ - -+). Then the trace Tr,, of the regular representation of B,,(x) is given by

x"f(R)m +m;— D, if m+m, is even,

Tr, (E®" ={
1. (E¥" ®v,) 0, if m+m, is odd,

where f(i) is given by (2.7).

Proor. This follows immediately from Corollary (2.11) by noting that Tr,(a) =
btr(a, 1) for all a € B,,(x). d

The second relation for characters of the Brauer algebra. The algebra B,,(x) is a split
semisimple algebra over C(x) with irreducible representations labelled by the partitions
in the set

B, ={AF(f —2k)|0<k<0n/20.

Except for a finite number of @ € Z, B,,(a) is a split semisimple algebra over C and
has irreducible representations indexed by the elements of B,, (see [14]).
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(2.13) THEOREM. Suppose that B,,(a) is semisimple and that, for each A € B,,, x*
denotes the irreducible character of B,,(a) corresponding to . Let u = (1"2"2- - ) be a
partition of m —2k, 0<k <0n/20) and let v=(1"2"---) be a partition of m —2¢,
0<{¢<0n/20 Let wUv denote the partition given by wu U v = (10"+mp0mtm) ..
Then

% XNEFF®@y )XNE® ®y,)=a* f(nUw),
AeB,,

where f(u U v) is given by (2.7).

Proor. This follows from Corollary (2.11) in exactly the same way that Theorem
(A.4) follows from Theorem (A.3) in the Appendix. d

REMARK. Diaconis and Shahshahani [5] have applied this result in order to study
the eigenvalues of random orthogonal and symplectic matrices.

Hermite polynomials. 1If k is even, then

. kmen K" (2m — 1!
(2.14) e = 20 Zmn:, = EOW Eofk(m)*,
and, if k is odd,
K ke (2s — 1)1

(2 15) e(1</2)t2+[ —

ms=0 2°m!s! B ms=0 (M — 25)!(2s)!
- > kS(zs—1)H< )7_ > fk(m)
m,s=0 . m=0

where fi.(m) is as defined in (2.7).
The Hermite polynomials H,,(x) are given by the following generating function:

e2xt— 2 _ E Hm(x)f

m=0

If we make a change of variables t— ¢tV —k/2 in this generating function we obtain that

x:ﬁ+(k/2)z2 E ( k/Z)m/ZH

m=0
Setting x = -V-1/2k,

(2.16) ekt = 20( k/2)""?H,,(V—1/2k )—
and, setting x =0,

(2.17) e = 20( k/2)""H,, (0)—

It follows by comparing (2.14), (2.15) and (2.16), (2.17) that:
(2.18) ProrpostTioN.  The values fi(m) defined in (2.7) satisfy
0 if k is odd
— _k 2 m/2H , ]’l — { ) )
Jm) = (=k/2) () wnere x V—1/2k, ifk is even,

and H,,(x) is the mth Hermite polynomial.
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This means that several important traces on the Brauer algebra are given by products
of Hermite polynomials. It is not known whether this is merely coincidence or whether
there is a good algebraic reason why they should be connected. Combinatorially, it is
not too surprising that the Hermite polynomials appear as it is well known [13] that the
Hermite polynomials can be given a combinatorial interpretation in terms of
k-matchings in complete graphs. Since the m-diagrams which form a basis of the
Brauer algebra can be viewed as matchings in the complete graph on 2m points, it is
not unreasonable that they should be related to the Hermite polynomials.

3. AN ArprLICATION TO WEYL GROUP SYMMETRIC FUNCTIONS

Type A. The Weyl group of type A,_, is the symmetric group S,. Define A=
Clxy, x1 5 x2, x5 ..o, x,, x, '], i.e. the set of S,-invariant polynomials in
X1, X5, ..., X,, where S, acts by permuting the n variables.
For each partition A = (A, A5, ..., A,,), define
_ det(x" )

DT et Yy
The Schur functions s,, form a basis of A [7, Ch.1 (3.2)]. Define an inner product on A
by defining
<S/\) s,u> = 8/\,u'

For each integer r >0, define p,=>/_ x}, and for a partition p = (py, o, ..., L¢)
define p,, =p,,Pu, " * ' Pu, One has the following standard results.
(Frobenius formula Type A, [7, Ch.I (7.8)]) Let w Fm. Then

(3.1) Pu= 2 X315y,

Akm

where x4 is the irreducible character of S,, corresponding to A Fm.
([7, Ch.1 (4.7)]) Let n and v be partitions. Then (assuming »n large)

(3'2) <p,u.) pv> = SMV/*L?)

where w? is the constant given by u? = 1"'m12"°m,! - - -, if p = (1"2"- ).

Type B. The Weyl group of type B is the hyperoctahedral group, H,, of signed
permutation matrices. H, can be given by generators sy, 55, . . ., s, and relations

s?=1, 1<i<n,
SiS]'ZSjSi, |l_]|>1,
SiSi+18i = Si+15iSi+1, lsisn-2,

S$n—18nSn—15n = $nSn—1SnSn—1.
Let xi,x,,...,x, be commuting variables. Define an action of H, on
—1 —1 —1
C[xlrxl sy X2y Xy ooy Xy Xy ]by
Xi+1, lf] = i;
5:X; =17 X;, ifj=i+1, forl<isn-—1,
X; otherwise,
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and

1 P
_ Xn lf]—}’l,
SpXj =

X; otherwise.

Define A, =Clxy, x7', x5, x5, ..., x,, x,,']"» so that A, is the set of H,-invarinat
Laurent polynomials in xq, x,, . .., X,.
For each partition A = (A, A5, ..., A,) define

det xi)\j+n7j+% _ xif(/\j+n7j+%)
(33) sby= ( n—j+} —(n—j+}) )
det(xf 772 —x; "7TD)

The sb, form a basis of A,. (A general proof, for any Weyl group, is given in [2,
Ch. VI, §3.3 Prop. 2]. This proof is essentially the same as that given for type A in [7,
Ch.I (3.2)].) Define an inner product on A, by defining

(sby, sb,)p = 6y,

For each integer r>0, define pb,=1+2>",x;+x;’, and for a partition u =
(m1, 2, - .., pg) define pb, =pb, pb,, - --pb,,. The following analogue of (3.1) is
proved in [9]. We shall give a new, almost completely combinatorial, proof in Section 5:

(3.4) Tueorem (Frobenius formula Type B). Suppose that n>>m. Let u € B,, and
suppose that p+m — 2k. Then

xXpp, = >, XNE®*®7,)sb,,

AeB,

where x* is the irreducible character of B,,(x) corresponding to A € B,, and E®*® Vo IS
as in (2.4).

(3.5) TuEoreM. Let pn and v be partitions and let k =|(u| —|v|)|. Suppose that
w=1m2"--) and v=(1"2"---) and define pUv=1"""2"""..)  Then
(assuming n large)

0, if k is odd,

b=
(b, Pbs f(pUv), otherwise,

where f(u U v) is given as in (2.7).

Proor. Let us suppose, for convenience, that |u|=|v|. Let k= |u|—|v| and let
m = |u|. Then, by (3.4),

pb, = 2 X (v,.)sba and  x*’pb, = 2 XNE®* P y,)sh,.

AeB, AeB,,

Thus,

(P, X°pby= > X'V XNEZ*?®y,).

AeB,,

The result now follows from (2.13). d

Type C. The Weyl group of type C is the hyperoctahedral group, H,, just as in the case

of type B. Define A, =C[xy, x;', x5, x5, ..., x,, x,,']"™, where the action of H, on
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Clxi, x1 5 x5, x5, ..., x,,, x,, '] is the same as in the case of type B. For each partition
A=(Ay, Ay, ..., A,) define

det(x[_/\f+n—j+1 _ xi—(/\,‘+n—j+1))

det(x:jtfjJrl _ xif(nf/‘le))

sC,

The sc, form a basis of A, Define an inner product on A, by defining

{scy, sc)e = 85,

For each integer r>0, define pc, =2/ x;+x;” and, for a partition u=

(I“(‘l) Moy ey I“(‘f); deﬁne pc,u. :pr,u.lpcnz T 'pClL/'
The following analogue of (3.1) is proved in [9].

(3.6) Tueorem (Frobenius formula type C). Suppose that n>>m. Let w € B,, and
suppose that p +m — 2k. Then

(3.7) xk(_l)lm—f(u)pclu = 2 X/\,(E®k®7,L)SC)\,

AeB,,
where X" is the irreducible character of B,,(x) corresponding to A € B,,, X' denotes the
conjugate partition to X and E®*®y,, is as in (2.4).

(3.8) THEOREM. Let p and v be partitions and let k =|(Jju| —|v|)|. Suppose that
w=1"2"--y and v=1"2"---) and define pUv=1"""2"""...)\ " Then
(assuming n large)

0, if k is odd,

C ) CV C = _ .
(PCu, py) {(—1)“UV' WMF(wU V),  otherwise,

where f(u U v) is given as in (2.7).

Proor. The proof is exactly analogous to the proof of Theorem (3.5) for type B.
O

Type D. A similar result follows in exactly the same way for type D, but there are
some annoying special cases which must be considered. We shall not unwind these
here: the proof of an analogue of the Theorem is exactly the same, and we refer the
reader to [9] for the appropriate definitions and analogue of (3.1).

4. A ‘SECOND ORTHOGONALITY' VIA TooLS FROM DIFFERENTIAL POSETS

The following approach and a sketch of the proof of Theorem (4.12) below was given
by R. Stanley after a lecture by the author at the LABRI at the University of Bordeaux
I in which the results of Sections 2 and 3 were presented. The combinatorial description
of the characters of the Brauer algebras was given in [9]. In Section 2 we derived the
‘second orthogonality’ for the irreducible characters of the Brauer algebra by appealing
to facts from representation theory. Stanley’s approach, given below, proves this
orthogonality directly from the combinatorial interpretation of the irreducible charac-
ters. In this paper we are turning the picture upside down and in Section 5 the result,
Theorem (4.12), from this approach of Stanley’s will be combined with the results from
Sections 2 to give a new derivation of the irreducible characters of the Brauer algebras.
Thus, for the moment, we do not know that the numbers 1n*(w) in Proposition (4.11)
actually are the irreducible characters of the Brauer algebras.
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Let A denote the ring of symmetric functions. We shall view A as the polynomial ring

(4.1) A=Q[pi,p2 -],
where p, denotes the kth power sum symmetric function. Given a partition w =
(xm2m=- -y, let w? =1I;i"m;! and let p,, = pT"'p5™>- - -. For each pair of partitions A,

u, let x5(u) denote the irreducible character of the symmetric group corresponding to
A evaluated at a conjugacy class labelled by w. The Schur functions are given by

5, = Z Xg(l-’*)

ukm /J'r)

p,tu

and form a basis of A. There is a standard inner project on A which satisfies

(4'2) <S)\) S}L) = 3/\#) <p/\) P;L> = SAMI“(‘?'

Viewing elements of A as elements of the polynomial ring (4.1) [7, I §5 Ex. 3c] shows
that the operator k 3, is the adjoint of multiplication by py; i.e., for any f, g € A,

d
4.3 , 8)= < sk — >
(4.3) (pefs @) =/, P
We have that
d i)
4.4 k—p.—pik—=k-1,
“4) P i P P

as operators on A. Define a generating function as follows:

GF = [ H e(pk+k3%k>tk H e(pk+1+k£k)tk:| -1

k odd k even

We view the product in square brackets as an operator acting on 1 e A. GF is an
element of Q[t,, ,, .. .] ® A. For each pair of partitions A, u, define values n*(u) by

(4.5) GF=3 ;, 5w,

where */u! is defined by
L

/.L' m]!m2!

if w=(1m2m- ),
We shall need the following identity from Stanley’s work on differential posets, [11,

Cor. 2.6a]:

9 il
Prt k7>tk — adkii+ Pk 3 1
e( P e eXopi 'k,

(4.6)
e(pk +1+ ka%k>tk — e%krﬁ+ iy +pktkek%ktk.
(4.7) THEOREM. Let p be a partition, let f(u) be given by (2.7) and let n°(u) be as
given in (4.5). Then
n(w) = f()-

Proor. It follows from Stanley’s identity (4.6) that

9 9
GF = [ 1_[ eIk + it ok op by 1_[ eI+ 4+ Ptk apktk:| -1,

k odd k even
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Note that the operator k;,- commutes with all of the operators p; and jaaj,, except py.
Thus, we may write

|: 1_[ eé’“k*ﬁﬂk 1_[ ezklz e+ Pilic Hek Py ’A:| .

k odd k even

Since k- -1 =0 for all k,
kapk’k 1=1

and we obtain that

GF = |: ]_[ elikti"'/’krk 1_[ e%kti+tk+pktk:| -1

k odd k even

= |: H e%kti H e%’“%‘*”k 1_[ ePk’k:| -1,

k odd k even k

It is clear from the action of p, on A that the coefficient of sz =1 in e?**- 1 is 1. Thus,

GF| =[] &% [] e
Sgs k odd k even
Thus, if u = (172" - ),
1
1% (w)=GF|, =1l e”"k o 1 eZ"’“"

wl s k odd , k even

The theorem now follows from (4.5). d

A combinatorial description of n*(u). A border strip is a connected skew diagram that
does not contain any 2 X 2 block of boxes. It is shown in [7, I §3 Ex. 11] that

(4.8) pesi= 2, (Z1y0™ s,

v2A
where the sum is over all partitions v 2 A such that v/A is a border strip of length k and
r(v/A) is the number of rows in v/A. It follows easily from (4.2) and (4.3) that

(4.9) k—sA > (—1ywmig
Pk MEA

where the sum is over all partitions u = A such that A/v is a border strip of length k
and r(A/v) is the number of rows in A/v.

Given partitions A and u, we shall say that A differs from p by a border strip if either
A S upand A/p is a border strip or w = A and w/A is a border strip. We shall denote the
border strip determined by A and u by bs(A, ). The length of a border strip is the
total number of boxes in the border strip. The weight of a border strip bs(A, ) is

wi(bs(A, ) = (=17,

where k is the number of rows occupied by bs(A, ). We shall make the convention
that wt(bs(A, A)) =1.

Let A and p = (q, Mo, - - ., i) be partitions. A p-up—down border strip tableau of
shape A is a sequence of partitions

=(@=29, A0, . A0 =2)
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such that for each 1 <j =<k either:

(1) A differs from AY~" by a border strip of length wu,, or
(2) p;is even and A9 =AU,

define the weight of the tableau 7 to be

k
(4.10) et(T) = [ | wt(bs(A?, AY~D)).
j=1
The following proposition follows from (4.8) and (4.9) and the definition of the n* in
(4.9).
(4.11) ProrposiTiON. Let p be a partition of m and let X be a partition of m —2{. Then

() = ET: wi(T),

where the sum is over all p-up—down border strip tableaux of shape A and wt(T) is as
given in (4.10).

A ‘second orthogonality relation’ for n*(w)
(4.12) THEOREM. Let w and v be partitions of m. Suppose that p = (1"2">--+) and
v=(1"2"---) and define p U v = (1"1""2""" ...\ Then

> )t () =02(wUv) =F(n U ),

Arm—2k
where the sum is over all A partitions of m — 2k, 0<k <[ /20 and f(un U v) is given
by (2.7).
Proor. The left-hand side can be written as
2 = X > w(T)wis),
Arm—2k AMm—2k (T,S)
where the inner sum is over all pairs (7, S) such that
T=(D=p9 p", ..., p0=2) and S=@=19,1,.. ., 19=21),

are pu and v-up—down border strip tableaux of shape A respectively. Given a pair
(T, S), the tableau

T+S=@=p9,...,p0=r=10, 1D . 17=0),

is a w U v up—down border strip tableau of shape J. It is clear from the definition of
the weight of an up—down border strip tableaux that wt(7T)wt(S) = wt(T *§). So

L2 = 3 S w(ws) = 3 wi(T =) = 17w U ).

The second equality now follows from Theorem (4.7). O

5. THE IRREDUCIBLE CHARACTERS OF THE BRAUER ALGEBRA

The goal of this is section to show that one can use the ‘second orthogonality
relations’ to give a proof of the Frobenius formula and a derivation of the characters of
the Brauer algebras which is elementary in the sense that it does not use
(1) the fundamental theorem of invariant theory for the orthogonal group, or
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(2) the Weyl character formula for the orthogonal group.

We will, however, make the following assumption:

(3) for a given m, the Brauer algebra B,,(n) is semisimple for some n € C and the
number of irreducible components is the number of partitions in the set B,, =
Arm =2k, 0<k <0m/20.

RemMark. To my knowledge, it is still not known how to prove (3) without using (1).
It is actually clear that (3) is true from Brauer’s derivation of the Brauer algebra [3],
which uses (1). Of course, much stronger results concerning the semisimplicity of the
Brauer algebra are known; see [14]. A previous proof [9] of the Frobenius formula for
the Brauer algebra used both (1) and (2) in a crucial way. It would be nice to be able to
remove the second part of the assumption given in (3) above. For this, it would be
sufficient to prove combinatorially that the center of the Brauer algebra has dimension
greater than or equal to Card(B,,).

We need to collect some standard facts from representation theory and symmetric
functions in the context of this special case. Although the general results appear in
some form in the literature [1, Ch. VIII; 2, Ch. VI; 7], we shall include the proofs for
completeness, since the proofs are short and it is hard to give good references for these
special cases.

(5.1) Lemma. If there exists n € C such that B,,(n) is semisimple, then, for all but a
finite number of n € C, B,,(n) is semisimple.

Proor. Let Tr denote the trace of the regular representation of B,,(n). Let Q,, be
the basis of B,,(n) given by the m-diagrams. Defilne the Gram matrix G(n)=
(Tr(d,d;)) with rows and columns indexed by the elements d; € Q,. B,(n) is
semisimple if det(G)##0. Let Tr, denote the trace of the regular representation of
B,.(x). Let G(x) = (Tr.(d;d;)). Then, since Tr,(d;d;) is a polynomial in x for all pairs
i, j, det(G(x)) is polynomial in x. By assumption, there exists an n € C such that B,,(n)
is semisimple. So det(G(n)) # 0 for some n € C. Thus det(G(x)) # 0 and, consequently,
det(G(n)) # 0 for all but a finite number of n e C. d

Weight space representations. Let I={-n,—-(n—-1),...,-2,-1,0,1,2,...,n—
1, nS}. Let {v; | i e I} be a set of independent non-commuting variables. Define V to be
the vector space over C with basis {v; | i € I}, and define

V& =C —spanfv, v, - - - v, | ix € 1,

so that the words (simple tensors) v, v, - - - v, are a basis of V™.

Let x4, X,, . .., X, be commuting, independent variables. Define x,=1 and x_; = x; !
fori=1,2,...,n, so that x; is defined for each i € I. Define the weight of each word
v, - v, of V¥ to be

Wt(vil e vim) :xl_] o e xi .

Note that the weight of a word is always of the form x“=x{x5>---x;, where
a=(ay,a,,...,a,) " For each sequence a € Z", define

(V®™"), =C —spanfy, - - - v,

lm

Wt(vi‘ R Uim) =x”}.
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For 0<k=<m — 1, define an action of the generators G, and E, of B,,(2n +1),
defined in (2.2), on V™ by

(Ui LA vinx)Gk TV Y (Vi VilVi, T Vi,

(5.2)

(ivi, - v, )Ex = 5ikj—ik+1 E L P L T A
jel

By writing out explicitly the action of a general m-diagram one checks easily that the
action defined in (5.2) extends to a well-defined action of B,,(2n + 1) on V®™. Since
the action of the Brauer algebra on V®" does not change the weights of the words,
(V®™m), is always a B,,(n) submodule of V™.

Let H, denote the hyperoctahedral group of n X n signed permutation matrices
defined by generators and relations in Section 3. Define an action of H, on the
variables v;, i € I, by

v:{:(i+1)) lf] = :l:l,

Sl«v]«Z Vi lf]::t(l“l‘l), forlSi$n—1,
v;, otherwise,

and

Vxp, lf] = =*n,

Snv] = .

v;, otherwise.
and define an action of W, on V" by WV, ;) =V, U, Define an action
of H, on monomials x; ---x; and on sequences a =(ay,...,a,) € Z" by requiring
that, for all words v; - --v; and w € H,,
(5.3) Ifwt(y, - v, )=x7"--xyy=x" then wt(w(v;, - - - v; ) = w(x?) =x""

(5.4) ProrosiTiON.  For each a € 7", define A(a) to be the partition determined by
rearranging the sequence (|ai|, |a2l, . . . , |a,|) into decreasing order. Then

(V®m)a = (V®m)/\(a);

as B,,(2n + 1) modules.

Proor. Let w € H, and let a € Z". We first show that the action of w gives a
B,,(2n + 1) module isomorphism

w: (VE™), — (V)0

The fact that w is a vector space isomorphism from (V®™), to (V®"),, follows from
(5.3) and the fact that w is invertible. To show that w is a B,,(2n + 1)-module
isomorphism we must show that w commutes with the action of B,,(2n + 1) on V&
One checks this for the generators G;, E;, 1<i<m-1, of B,,(2n+1), with
computations determined by

w((v;,v1,)G) = V(iU = (W (V40;,))G,
and

W((UiIUiQ)E) = 81'2[2 2 Vy(i)Vw(—i) — 8W(i1)w(i2) 2 Viv_1 = (W(vilviz))E:
iel iel
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where G and E denote the generators of B,(2n + 1) acting on V% The proposition
now follows by choosing an appropriate element w € H, such that wa = A. a

Symmetric functions, type B. The Weyl group of type B is the hyperoctahedral group,
H,, of signed permutation matrices defined by generators and relations in Section 3.
Let x,x,,...,x, be commuting variables. There is an action of H, on
Clxy, x1 Y x2, x5 ..., x,, x,'] given by extending linearly the action of H, on
monomials given in (5.3). Define A, =C[x,, x1', x5, x5, ..., x,, x,, '] so that A, is
the set of H,-invariant Laurent polynomials in x, x5, . . ., X,,.

For each a € 7", let x* denote x{' - -+ X and define an action of H, on Z”, such
that wx* =x"* for all w € H, and all A € Z". For each partition A = (A, A5, ..., A,)
define the monomial symmetric function mb, by

> x4
ae H,A

where H,\ is the H, orbit of A in Z". Also recall from (3.3) that, for each partition
A=Ay, Ay, ..., A,), One defines

. —j+1 —(\; 41
det(xi)\]+n /+2_xi (Aj+n /+2))

det(x?’”% _ x;(”7f+%))

sb/\:

and that the sb, form a basis of the symmetric function ring A,.
For each w € H,, let e(w) = det(w) denote the sign of w. Let o be the vector space

of alternating polynomials in Z[xl,x2 ,x2, X322, .. xn, X, ], i.e. polynomials f such
that wf =ge(w)f for all we H, Let p=(n— %, n—3,...,3,%). Then, since the
elements

briy= 3 ()",

weH,

where A is a partition, have no common terms, they are linearly independent elements
in &/. Furthermore, it is not difficult to see that

byip

. b:
(5.5) sby =~

o
(5.6) LEMMA. The values Kb, determined by
= Kb, \sb,
X
are all integers.

Proor. Multiplying both sides of the defining relation for the values Kb, by the
alternating polynomial b, and using (5.5) gives

mb,,b, = 2 Kb by p

which i is a relatlon in vector space o of alternating polynomlals in Z[x} X3y, x] , x2, X, 4
, X5, X, ). It follows that Kb ! = mb,,b,| .. Thus Kb, is an integer. O

A completely combinatorial proof of the above lemma, which actually determines a



A ‘second orthogonality relation’ 701

combinatorial rule for computing the coefficients Kb,,, can be given in exactly the
same way that Theorem (6.8) is proved in [9].

Recall the definition of the power symmetric functions pb, from Section 3. Let B,, be
as defined in the beginning of this section and, for each pair of partitions A, u € B,), let
1n*(w) denote the numbers defined in (4.5), given by

n*(w) =2 wi(T),
T
where the sum is over all w-up—down border strip tableaux 7 of shape A.
(5.7) LEmMmA. For each u € B,),

pb,.= >, nM(w)sb,.

AeBy,

Proor. This follows by induction from the identity
pb,sby =3, Wi(bs(, 1))sb,.,
j

where the sum is over all partitions w such that u differs from A by a border strip; we
also include the case u = A when r is even. This identity is proved in exactly the same
fashion as [7, I §3 Ex.11]. A complete derivation of this formula appears in [9,
Theorem (6.8)]. d

(5.8) ProrposiTioN.  For each a € 7", let B,: B,,(2n +1)— C denote the character of
B,.(2n + 1) acting on the weight space representation (V®™),. Let pb, denote the power
symmetric function as defined in Section 3 and let mb, denote the monomial symmetric
function defined above. Then, for each w+m — 2k € B,,,
(2n +1)'pb,, = X BA(E“ @ y,)mb,,
A
where E®*®y,, is as defined as in (2.4).

Proor. Define a weighted trace of B,,(2n + 1) acting on V" by

(5.9) wtr(b) = >, v v,-mb|u,_] vy, WEHU ),

iyeeesdpy
for each b € B,,(2n + 1), where the sum is over all sequences iy, i, ..., i, With i; € I,
and where v; - - v,»mb|v,_1 ...y, 1s the coefficient of v, ---v; in v;--v; b. Using

Proposition (5.4), we have that Ba = Baw) for all a € 7". Thus, for all b € B,,(2n + 1),
(5.10) wir(b) = >, B*(b)x* = 3, Ba(b)mb,.
a A

where mb, =2, x". Let v, and E be as defined in (2.4). Then an easy computation
shows that wtr(y,)=1+2>" x7+x;’, and wtr(E)=2n+1. The proposition now
follows from (5.10) and the easy fact that

wir(E®*®y,,) = wtr(E)* wtr(y, wtr(y,,) - - - = 2n + 1)*pb,, pb,, - - -. O
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Irreducible characters of Brauer algebras

(5.11) THEOREM. Let n>> m. Let the values n*(w), for A, w € B,, be given as in (4.5).
Define the characters x*, A € B,, on B,,(2n + 1) by defining

XMEFF®y,) = 2n +1)n*(n),
for each partition w € B,,. Then, up to a permutation of the elements of B,,, the
characters x* are the irreducible characters of B,,(2n + 1).

Proor. Since the functions B8, are the characters of the weight spaces (V™), it
follows that, for each partition A € B,,,

Br= Z Cux”

veB,,

where x*, v € B,, denote the irreducible characters of B,,(n) and where the C,, are all
non-negative integers. Then, for each partition u € B,,,,

> @n + 19 (w)sb, = (2n +1)*pb,, by Lemma (5.7),
=> B(w)Kbylshb,, by Propositions (5.8) and (5.6),
AV

= 3 KbilCoX(w)sh..

YAV

Thus, if we define matrices
Kbil = (Kb):u]n))\,,u EB,,,} C = (C/\V)/\,,u, EB,”J
n=(Cn+ V" urpes, X=X B)unes,

then n = DY, where the matrix D = (Kb ')'C is such that all entries are integers. It is
because of Lemma (5.1) that we know that for » sufficiently large the matrix x is square
and has rows and columns indexed by the elements of B,
It follows from the ‘second orthogonality relations’ (2.13) and (4.12) that
A'X =m'n=x'D'DY.

Thus x'x = x'D'DY, and since the character table of a semisimple algebra is always
invertible, this implies that D'D = I, where I is the identity matrix. Since D is a matrix
with all integer entries and D'D = I, one can show easily that D is a signed permutation
matrix, i.e. a matrix with exactly one non-zero entry, equal to £1, in each row and each
column.

We know that x*(1”) is the dimension of the irreducible representation of B,,(n)
indexed by A and therefore x*(1”)>0. Since, by Proposition (4.12), n*(1") is the
number of up—down tableaux of shape A and length m, we have that n*(1™) >0 for all
X € B,,. Since n = D,, it follows that D cannot have negative entries. Therefore D is a
permutation matrix. The theorem follows. ]

The following Frobenius formula given in Theorem (3.4) is now an immediate
corollary of Theorem (5.11) and Lemma (5.7).

(5.12) Tueorem (Frobenius formula Type B). Suppose that n>>m. Let u € B,, and
suppose that p+m — 2k. Then

@2n +1)*pb, = >, XNE®*®v,)sb,,

AeB,
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where X" is the irreducible character of B,,(2n+1) corresponding to A € B,, and
E®*®vy, is as in (2.4).

A determinantal formula. Given a Frobenius formula of the form given in Theorem
(5.12), there is a ‘standard way’ of deriving a determinantal-type formula for the
irreducible character. Although this procedure is well known to the experts, it is
periodically rediscovered. The general method is probably originally due independently
to D.-N. Verma and A. Zelevinsky. A survey appears in [8]. We derive, explicitly, the
determinantal formula for the special case of the Brauer algebra in the following
theorem. To our knowledge, this formula has not been explicitly worked out for the
Brauer algebra, except for the case in which the characters are evaluated at the
identity, which appears in [6]. The result in [6] is interesting as it describes a generating
function for the dimensions of the weight space representations in terms of Bessel
functions. A similar Bessel function description can also be given for the general
character of the weight space, but it is not particularly nice in the general case; we shall
not present it here.

For each A € B,,, let x* denote the irreducible character of B,,(2n + 1) correspond-
ing to A. For each a = (ay, a,,...,a,) € Z", let A(a) be the partition determined by
rearranging the sequence (|ay|, la,|, . .., |a,|) into decreasing order. Let B, - B, " * Ba,
denote the character 8, of the weight space (V).

(5.13) THEOREM. Let the notation be as in the previous paragraph. Then

X' = det(:B/\;—H—j - B/\i+2n—i—_j+l)1€i,jén'

Proor. Comparing the ‘Frobenius formula’ with the equality in Proposition (5.8),
we have

Z Bamby= X X Bux‘= Z X"sb,.

reB,, AeB,, acH, veB,,

Multiplying both sides of the relation above by b, and using (5.5) gives

DoxY D ewntT= 3 3 Y Beew)x .

veB,, weH, AeB, aeH,A veH,

For simplicity, substitute v =a + vp — p, to obtain

S xS e = T S (3 @By i

veB,, ueH, AeB, aeH,A “veH,

Both sides of this equation are alternating polynomials and can be written as linear
combinations of the elements b,,,, where A € B,,. Note that if A is a partition, then
Atp=(0A+n—3...,A,+3) is always such that A\+n—3>...>A,+3>0.
Thus, one can compare coefficients of x”™*, where y+p is a strictly decreasing
sequence, i.e. y;+n—3>--->v,+5>0. If A is a partition, then w(A+p) is a
strictly decreasing sequence iff w is the identity. Comparing coefficients gives that
A = . It follows that

XA: E 8(U)B)\+pfvp'

veH,

It remains to express the right-hand side in a determinantal form. Let u =
Atp—vp=(my,..., ) If ve H, such that v(j)= +i, then the ith entry of vp is
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+(n —j +%). Thus the ith entry, w;,, of u =A+p—vpis A\, +n—i+5F(n—j+3), so
that

n—iti P
(5.14) ,{ P ifv(j)=1

AN+2n—i—j+1, if v(j)=—i

The elements of H, can be viewed as signed permutations v = (v(1), v(2), ..., v(n)).
Each element v € H, is of the form v =¢em, where € =(x1, £2,..., +n) e H, and
m=(v()|, ..., v(n)]) €S,. Thus,

X'= 2 eWBrp= 2 (DX e(mBu B,
veH, e=(x1, £2,..., +n) mes,

where in the last expression w = A + p — €7lp, so that u; is given by (5.14) and &(e) is

the number of negative entries of the sequence e. It is now easy to rewrite this

expression in the determinantal form given in the statement of the theorem. O

ReEmaRrRk. By evaluating both sides of the equation in (5.13) at the identity element
of the Brauer algebra, one obtains a ‘determinantal’ formula for the dimension of the
irreducible representation of the Brauer algebra indexed by A. This is analogous to the
determinantal formula for the dimension of the irreducible representations of the
symmetric group (see [10 §3.2]). It would be interesting to derive the ‘hook formula’
[12, Lemma 8.7]

kY, Al
dA—<|/\|>(k IA|— Dl —

(i)er i

for the dimensions of the irreducible representations of the Brauer algebra from the
determinantal formula. This would be analogous to the derivation of the hook formula
for the symmetric group case originally given by Frame, Robinson and Thrall (see [10,

§3.2)).
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APPENDIX: THE SECOND RELATION FOR CHARACTERS OF A SPLIT SEMISIMPLE ALGEBRA

Let A be a finite-dimensional algebra over a field F. Let i A—F be a non-
degenerate trace on A, i.e. a linear functional such that ?(alaz):?(azal) for all
a,,a, € A and such that if @ € A, a #0, then there exists b € A such that #(ba)# 0.
Define a bilinear form on A by defining

(a;, ay) = ?(al; a,)

for all ay, a, € A. Let G ={g;} be a basis of A and let G* = {g;*} be the dual basis to the
basis G with respect to the form (, ), i.e. the basis defined by (g;, g7*) = ;.
Given an element a € A, define

(A1) [a] = EC giagr.

One can show that the element [a] is independent of the choice of the basis G.
The algebra A acts on itself by left multiplication and by right multiplication. The
bitrace of these two actions can be given by

(AZ) btr(al) 612) = E algia2|81 ’

8ieG
where a,ga,|,, denotes the coefficient of g; in the product a,g;a,, expanded in terms of
the basis G.

(A.3) THEOREM. For any two elements a,, a, € A,

btr(ay, ax) ={a,, [a]) =([a1], az).
ProOF.

btr(a,, a;) = D, 18|y, = >, (a18:a,, gF)

geG g8:ieG

= 2 ?(algiazg,*) = ?(al[az]) =(a, [a2])-

gieG
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The second equality follows by noting that
(ar, [y = X Hargiargd) = 2 (gFargiaz) = ([ai], az). O

gieG g8:eG

(A.4) Tueorem. If A is a split semisimple algebra over F and A is an index set for the
irreducible representations of A, then

EA X (a)x(az) ={ay, [az]),

AeA

where X* denotes the irreducible character of A corresponding to the irreducible
representation labelled by A.

Proor. A acts on itself by both left and right multiplication. These two actions
commute and each generates the full centralizer of the other in End(A). This fact,
combined with the double centralizer theory, implies that
(A.5) A= D A,QA,

AeA
as A® A’ bimodules. Here A, denotes the irreducible A-module indexed by A € A
and A* the corresponding A°”-module. Taking traces on each side of (A.5) gives that

btr(ay, a;) = )\EA Xa(a)x*(ay),

where x* denotes the character of A corresponding to A* and A, denotes the character
of A corresponding to A,. It is clear that x*(a) = x,(a) for all a € A. The theorem now
follows from Theorem (6.3). O

The group algebra of a finite group. Let G be a finite group and let A = FG be its
group algebra over F. Let 7: FG — F given by

?((1) =a |1 1)
where a|1 denotes the coefficient of the identity in the element a. 7 is a non-degenerate

trace on FG and the dual basis to the basis of group elements is the set of g ', g € G. If
g € G, then the element [g] defined by (A.1) is given by

[s1=(8?) 2k, where g?=|Gl/|%,[,
ke 6
and €, is the conjugacy class of the element g. In this special case, Theorem (A.4) gives
the classical result that if FG is split semisimple then

(A.6) PRAYSOR (&) 3 k)= {h? ifge o,

ke, 0, otherwise,

where G is an index set for the irreducible representations of G and x* denotes the
irreducible character of G associated to A € G.

The symmetric group. In the case of the symmetric group S§,, the conjugacy classes are
indexed by partitions wtm. If pw=(1"2">---) is a partition of m, then u?=
1""'m,12"m,! - - -, and it follows from (A.6) that

2 X)X (v) = 8,12,

Abm

where x*(u) denotes the irreducible character of S,, indexed by A evaluated at the
conjugacy class indexed by w.



