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 A ‘Second Orthogonality Relation’ for Characters of Brauer Algebras
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 1 .  I NTRODUCTION

 In a first course in representation theory ,  one usually learns that there are two
 important relations for characters of a finite group ,  the first orthogonality relation and
 the second orthogonality relation .  When one moves on to study algebras which are not
 necessarily group algebras it is not clear ,   a priori ,  that the study of characters would be
 fruitful ,  and one encounters various problems in developing a theory analogous to that
 for finite groups .  It is true ,  however ,  that the characters of algebras ,  such as the
 Iwahori – Hecke algebras ,  the Brauer algebras and the Birman – Wenzl algebras ,  are
 well-defined and important .  An analogue of the first orthogonality relation for
 characters of such algebras is understood and appears in [4] .  In the Appendix of this
 paper ,  we show that the second orthogonality relation for characters makes sense for
 split semisimple algebras (although it is no longer an orthogonality relation) .

 This paper is concerned with the ‘second orthogonality relation’ for the Brauer
 algebras .  We derive this relation explicitly .  After a talk on the results in Sections 1 and
 2 of this paper at University of Bordeaux I ,  R .  Stanley sketched an alternate proof of
 the results in Section 1 using the combinatorial interpretation of the characters of the
 Brauer algebra and tools from his paper [11] .  Here we present the proof of Stanley’s as
 a theorem purely about the combinatorial rule for the characters of the Brauer
 algebras .  Then we study the naturally occurring weight space representations of the
 Brauer algebra .  Putting the three facets together ,  we are able to give a new derivation
 of the irreducible characters of the Brauer algebras .

 I would like to mention ,  here in the Introduction so that it gets noticed ,  that I have
 been unable to compute the second relation for characters explicitly in either the case
 of the Iwahori – Hecke algebra of type A or the case of the Birman – Wenzl algebra .
 Computing these relations could be useful in the study of representations of quantum
 groups and / or  q -dif ferential posets and / or  q -Hermite polynomials .

 This paper is organized as follows .
 In the Appendix we give an argument that there is an analogue of the second

 orthogonality relation for characters of a finite group in the case of any finite-
 dimensional algebra with a non-degenerate trace form (in particular ,  a split semisimple
 algebra) .  The purpose of this is to show that the study of the second relation for
 characters makes sense for the case of the Brauer algebra .  We have put this material in
 an Appendix as it is primarily algebraic in nature and is not needed in the rest of paper .

 In Section 2 we derive by an enumerative argument the explicit form of the second
 relation for characters of the Brauer algebra .  It is interesting to note that the formulas
 can be expressed in terms of products of certain Hermite polynomials .  In Section 3 we
 give an application of our result of Section 2 to Weyl group symmetric functions of
 types  B , C  and  D .  Diaconis and Shahshahani [5] have also applied these results in their
 study of the eigenvalues of random orthogonal and symplectic matrices .  In Section 4
 we present Stanley’s proof of analogous ‘second relation’ formulas for certain numbers
 determined by up – down border strip tableaux .

 In Section 5 we show that the ‘second orthogonality relations’ of Sections 2 and 4
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 can be used to give a new proof of the fact that the numbers determined by weighted
 sums of up – down border strip tableaux actually are the characters of the Brauer
 algebras .  This proof is in the same vein as Frobenius’ original derivation of the
 characters of the symmetric groups .  This approach also gives a new proof of the
 Frobenius formula for the Brauer algebras .  This proof is quite elementary and the
 ‘second orthogonality relations’ are used in place of the Weyl character formula which
 was used in the original proof [9] .

 2 .  T HE  B RAUER  A LGEBRA

 An  m -diagram is a graph on two rows of  m  vertices each ,  one above the other ,  and
 2 m  edges such that each vertex is incident to precisely one edge .  The number of  m
 diagrams is

 (2 . 1)  (2 m  2  1)!!  5  (2 m  2  1)(2 m  2  3)  ?  ?  ?  3  ?  1 .

 We multiply two  m -diagrams  d 1  and  d 2  by placing  d 1  above  d 2  and identifying the
 vertices in the bottom row of  d 1  with the corresponding vertices in the top row of  d 2 .
 The resulting graph contains  m  paths and some number  g   of closed cycles .  Let  d  be the
 m -diagram the edges of which are the paths in this graph (with the cycles removed) .
 Then the product  d 1 d 2  is given by  d 1 d 2  5  x  g d .  For example ,  if

d1   = and d2   =

 then

d1 =  x2  d2   =

 Let  x  be an indeterminate .  The  Brauer algebra B m ( x ) is the  C ( x )-span of the
 m -diagrams .  Diagram multiplication makes  B m ( x ) an associative algebra .  By conven-
 tion  B 0 ( x )  5  B 1 ( x )  5  C ( x ) .  For each complex number  a  P  C   one defines a Brauer
 algebra  B m ( a  ) over  C   as the  C -linear span of the  m -diagrams ,  where the multiplication
 is given as above except with  x  replaced by  a .  Although we shall state our results for
 the algebra  B m ( x ) ,  unless otherwise stated ,  they also hold for the algebras  B m ( a  )
 (replacing  x  by  a  ) .

 Under the above multiplication the  m -diagrams with only vertical edges form a
 symmetric group  S m   inside the Brauer algebra .  For 1  <  i  <  m  2  1 ,  let

Gi   =

. . . 

. . . . . . 

. . . 

and Gi   =

. . . 

. . . . . . 

. . . 

 (2 . 2)

 The elements of the set  h G i  ,  E i  3  1  <  i  <  f  2  1 j   generate  B m ( x ) .

 Cycle type .  We associate to each  m -diagram a partition  τ  ( d )  P  B ̂  m   called the cycle type
 of  d .  To do this ,  we traverse the diagram  d  in the following way .  Connect each vertex
 in the top row of the diagram  d  to the vertex just below it in the bottom row by a
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 dotted line .  Beginning with the first vertex (moving left to right) in the top row of  d ,
 follow the path determined by the edges and the dotted lines and assign to each edge
 the direction that it is traversed .  Returning to the original vertex completes a  cycle  in  d .
 If not all vertices in  d  have been visited ,  start with the first not yet visited vertex in the
 top row of  d  and traverse the cycle adjacent to it .  Do this until all vertices have been
 visited .  The diagram

d   = (2 . 3)

 has three cycles .  The first is on vertices 1 ,  2 ,  3 ,  6 ,  5 ,  the second on vertices 4 ,  7 ,  8 ,  9 ,  11 ,
 and the third on vertices 10 ,  12 ,  13 ,  14 .  To each cycle of  d ,  let  U ( c ) denote the number
 of edges of  c  directed from bottom to top and  D ( c ) the number of edges of  c  directed
 from top to bottom .  The positive integer

 t ( c )  5  u U ( c )  2  D ( c ) u

 is called the type of the cycle  c .  As  c  runs over all cycles of  d ,  the sequence of numbers
 t ( c ) ,  arranged in decreasing order ,  is denoted  τ  ( d ) ,  the  type  of the diagram  d .  In
 example (2 . 3) above ,   τ  ( d )  5  (3 ,  1 ,  0) .

 Characters .  If  d 1  is an  m 1 -diagram and  d 2  is an  m 2 -diagram ,  then  d 1  ̂  d 2  is the
 ( m 1  1  m 2 )-diagram obtained by placing  d 1  to the right of  d 2 .  Let  E  denote the
 2-diagram

E   = (2 . 4)

 and let  g m   denote the  m -diagram

. . . 
γm   =

. . . 

 For a partition  m  5  ( m  1  ,  m  2  ,  .  .  .  ,  m t ) ,  let  g m  5  g m  1  ̂  g m  2  ̂  ?  ?  ?  ̂  g m t
 .  We have the

 following theorem from [9] .

 (2 . 5)  T HEOREM .  If d is an m - diagram and  χ   is a character of B m ( x ) , then

 x r χ  ( d )  5  χ  ( E  ̂  h  ̂  g m  ) ,

 where  m   is the partition formed by the nonzero parts of the type  τ  ( d )  5  (0 m 0 1 m 1 2 m 2  ?  ?  ? )
 of the diagram d and r and h are gi y  en by h  5  ( m  2  u m  u ) / 2  and r  5  h  2  m 0  .

 The trace  χ  [
 2 m .  Given a diagram  d  on  m  dots ,  number the dots in each row from left to

 right 1 ,  2 ,  .  .  .  ,  m .  Let  Ω [
 2 m   be the set of diagrams on 2 m  dots which have edges

 connecting 1  5  2 ,  3  5  4 ,  .  .  .  ,  (2 m  2  1)  5  2 m  in the lower row .  Let

 B  [
 2 m  5  C ( x )  2  span h d  P  Ω [

 2 m j .

 B 2 m ( x ) acts on  B  [
 2 m   by left multiplication .  The trace of the action of  B 2 m ( x ) on  B  [

 2 m   is
 given by

 (2 . 6)  χ  [
 2 m ( a )  5  O

 d P Ω  [
 2 m

 ad 3 d  ,
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 where  a  P  B 2 m ( x ) and  ad 3 d   denotes the coef ficient of the diagram  d  in the product  ad .
 For each pair of positive integers  k , m ,  define  f k ( m ) as follows :

 if  k  is  odd ,  f k ( m )  5 H 0 ,

 ( m  2  1)!! k m / 2 ,

 if  m  is  odd ,
 if  m  is  even ;

 if  k  is  even ,  f k ( m )  5  O  m /2 

 s 5 0
 S m

 2 s
 D (2 s  2  1)!! k s ,

 where ( m  2  1)!! is defined by (2 . 1) .  If  m  5  (1 m 1 2 m 2  ?  ?  ? ) is a partition ,  then define

 (2 . 7)  f  ( m  )  5 P
 k

 f k ( m k ) .

 (2 . 8)  T HEOREM .  Let  χ  [
 2 m  be the trace of the action of B 2 m ( x )  on B [

 2 m . Then :
 (1)  if  m   is a partition of  2 m  2  2 h ,  0  <  h  <  m , then

 χ  [
 2 m ( E  ̂  h  ̂  g m  )  5  x h χ  [

 2 m 2 2 h ( g m  ) ;

 (2)  if  m  5  (1 m 1 2 m 2 ?  ?  ? )  is a partition of  2 m , then

 χ  [
 2 m ( g m  )  5  f  ( m  ) ,

 where f  ( m  )  is gi y  en as in  (2 . 7) .

 P ROOF .  Let  m  5  ( m  1  ,  m  2  ,  .  .  .  ,  m s ) be a partition of 2 m  2  2 h  for some 0  <  h  <  m ,  and
 let  a  5  E  ̂  h  ̂  g m   on  B  [

 2 m .  Let  d  P  Ω [
 2 m .  Since  a  contains horizontal edges connecting

 1  5  2 ,  3  5  4 ,  .  .  .  ,  (2 h  2  1)  5  2 h  in the upper row we know that  ad 3 d  ?  0 only if  d  also
 has edges connecting 1  5  2 ,  .  .  .  ,  (2 h  2  1)  5  2 h  in the upper row .  In this case we have
 that  d  5  E  ̂  h  ̂  d 1  ,  where  d 1  is a diagram on 2 m  2  2 h  dots .  We obtain that

 χ  [
 2 m ( E  ̂  h  ̂  g m  )  5  O

 d P Ω  [
 2 m

 ad 3 d  5  O
 d P Ω  [

 2 m

 ( E  ̂  h  ̂  g m  )( E  ̂  h  ̂  d 1 ) 3 E  ̂  h ̂  d 1

 5  x h  O
 d 1 P Ω  [

 2 m 2 2 h

 g m d 1 3 d  5  x h
 χ  2 m 2 2 h ( g m  ) ,

 proving (1) .
 Let  m  5  ( m  1  ,  .  .  .  ,  m s ) be a partition of 2 m .  We shall refer to the factors  g m i

   in
 g m  5  g m  1

 ̂  ?  ?  ?  ̂  g m s
   as the cycles of  g m  .  If  d  is a diagram in  Ω [

 2 m   then ,  since  g m   is a
 permutation ,

 g m  d 3 d  5 H 1 ,  if  g m  d  5  d ,
 0 ,  otherwise .

 Thus

 (2 . 9)  χ  [
 2 m ( g m )  5  (number  of  d  P  Ω [

 2 m  such  that  g m  d  5  d ) .

 Let  d  P  Ω [
 2 m   and assume that  g m d  5  d .  Imagine that  g m   is placed above  d  in order to

 compute the product  g m  d .  We shall say that a horizontal edge in the top row of  d  which
 connects a dot which is underneath a cycle  g m i

   in  g m   to a dot which is underneath a
 cycle  g m j

   in  g m   to a dot which is underneath a cycle  g m j
   in  g m   is an edge connecting the

 cycles  g m i
   and  g m j

 .  Then one must have that :
 (1)  d  does not contain any horizontal edges in the top row which connect cycles of  g m

 of dif ferent length .
 (2)  If there is an edge in  d  connecting two cycles of length  k ,  then all dots under the
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 first cycle must be connected to dots in the second cycle .  There are exactly  k  dif ferent
 possible configurations of edges on these cycles :

=

 (3)  If  d  contains an edge which connects a cycle to itself ,  then the cycle must be even .
 (4)  There is exactly one possible configuration of edges under a single cycle of even
 length which is connected to itself :

=

 Suppose that  m   contains  m k   cycles of length  k .

 Case  1 .  k  is odd .  Then it follows from (3) that  m k   must be even and the cycles of
 length  k  must be connected in pairs .  There are ( m k  2  1)!!  5  ( m k  2  1)( m k  2  3)  ?  ?  ?  3  ?  1
 ways to pair the cycles and  k  ways to connect each of these  m  / 2 pairs .  This gives a total
 of

 ( m k  2  1)!! k m k /2  5  f k ( m k )

 choices for the edges in  d  under the cycles of length  k  in  g m  .

 Case  2 .  k  is even .  By (2) ,  we may choose any even number ,  2 s ,  of cycles to be
 connected in pairs and pair them in (2 s  2  1)!! ways .  By (2) again ,  each of the  s  pairs
 may be connected in  k  ways .  By (4) ,  each of the remaining cycles is connected to itself
 in a unique way .  Summing over  s ,  this gives a total of

 O  m k 

 s 5 0
 S m k

 2 s
 D (2 s  2  1)!! k s  5  f k ( m k )

 choices for the edges in  d  under the cycles of length  k  in  g m  .
 Thus ,  the number of  d  P  Ω [

 2 m   such that  g m d  5  d  is  p k  f k ( m k ) ,  where  m  5  (1 m 1 2 m 2  ?  ?  ? )
 and the theorem follows from (2 . 9) .  h

 The trace of the regular representation .  Let  Ω m   denote the set of all diagrams on  m
 dots .  By definition ,  these diagrams form a basis of the Brauer algebra  B m ( x ) . B m ( x )
 acts on itself by both left multiplication and right miltiplication .  The bitrace of these
 two actions is given by

 btr m ( a 1  ,  a 2 )  5  O
 d P Ω m

 a 1 da 2 3 d ,

 where  a 1  ,  a 2  P  B m ( x ) and  a 1 da 2 3 d   denotes the coef ficient of the diagram  d  in the
 product  a 1 da 2  .  We shall refer to btr m   as the bitrace of the regular representation of the
 Brauer algebra .
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 (2 . 10)  T HEOREM .  Let c ,  b be diagrams in  Ω m . Then

 btr m ( c ,  b )  5  χ  [
 2 m ( c  ̂  b ) ,

 where  χ  [
 2 m  is gi y  en by  (2 . 6) .

 P ROOF .  First we describe a simple bijection between  Ω m   and  Ω [
 2 m .  Let  d  P  Ω m .

 Number the vertices of the top row of  d ,  left to right ,  with 1 ,  2 ,  .  .  .  ,  m  and the vertices
 of the bottom row of  d ,  right to left ,  with  m  1  1 , m  1  2 ,  .  .  .  ,  2 m .  Arranging the vertices
 of  d  into a single row of 2 m  vertices ,  in order ,  determines a diagram  f  ( d ) of  Ω [

 2 m .  In
 some sense ,   f   takes a diagram ,  splits it down the horizontal centerline ,  puts a hinge on
 the right-hand side ,  and opens it up to be twice as long .

If d  = then  φ(d)  =

 It is clear that  f   is a bijection .
 The following computation is now immediate :

 btr m ( c ,  b )  5  O
 d P Ω m

 cdb 3 d  5  O
 f  ( d ) P Ω m

 ( c  ̂  q ) f  ( d ) 3 f  ( d )  5  χ  [
 2 m ( c  ̂  q ) ,

 where  q  is the same diagram as  b  except  turned  over .  The fact that  χ  [
 2 m ( c  ̂  q )  5

 χ  [
 2 m ( c  ̂  b )   follows from Theorem (2 . 5) and the fact that the cycle type of  b  is the

 same as the cycle type of  q .  h

 (2 . 11)  C OROLLARY .  Let  m  5  (1 m 1 2 m 2  ?  ?  ? )  be a partition of m  2  2 k ,  0  <  k  <   m  / 2  , and
 let  …  5  (1 n 1 2 n 2  ?  ?  ? )  be a partition of m  2  2 , ,  0  <  ,  <   m  / 2  . Let  m  <  …   denote the
 partition gi y  en by  m  <  …  5  (1 ( m 1 1 n 1 ) 2 ( m 2 1 n 2 )  ?  ?  ? ) . Then

 btr m ( E  ̂  k  ̂  g m  ,  E  ̂  ,  ̂  g …  )  5  x k 1 , f  ( m  <  …  ) ,

 where  f  ( m  <  …  ) is given by (2 . 7) .

 (2 . 12)  C OROLLARY .  Let  m  5  (1 m 1 2 m 2  ?  ?  ? )  be a partition of m  2  2 h ,  0  <  h  <   m  / 2  , and
 let  m ̂  5  (2 m 2  ?  ?  ? ) . Then the trace  Tr m  of the regular representation of B m ( x )  is gi y  en by

 Tr m ( E  ̂  h  ̂  g m )  5 H x h f  ( m ̂  )( m  1  m 1  2  1)!! ,
 0 ,

 if  m  1  m 1  is  e y  en ,
 if  m  1  m 1  is  odd ,

 where f  ( m ̂  )  is gi y  en by  (2 . 7) .

 P ROOF .  This follows immediately from Corollary (2 . 11) by noting that Tr m ( a )  5
 btr( a ,  1)   for all  a  P  B m ( x ) .  h

 The second relation for characters of the Brauer algebra .  The algebra  B m ( x ) is a split
 semisimple algebra over  C ( x ) with irreducible representations labelled by the partitions
 in the set

 B ̂  m  5  h l  £  (  f  2  2 k )  3  0  <  k  <   m  / 2  j .

 Except for a finite number of  a  P  Z , B m ( a  ) is a split semisimple algebra over  C   and
 has irreducible representations indexed by the elements of  B ̂  m   (see [14]) .



 A  ‘ second orthogonality relation ’  691

 (2 . 13)  T HEOREM .  Suppose that B m ( a  )  is semisimple and that , for each  l  P  B ̂  m  ,  χ  l

 denotes the irreducible character of B m ( a  )  corresponding to  l . Let  m  5  (1 m 1 2 m 2  ?  ?  ? )  be a
 partition of m  2  2 k ,  0  <  k  <   m  / 2  , and let  …  5  (1 n 1 2 n 2  ?  ?  ? )  be a partition of m  2  2 , ,
 0  <  ,  <   m  / 2  . Let  m  <  …   denote the partition gi y  en by  m  <  …  5  (1 ( m 1 1 n 1 ) 2 ( m 2 1 n 2 )  ?  ?  ? ) .
 Then

 O
 l P B m

 χ  l ( E  ̂  k  ̂  g m ) χ  l ( E  ̂  ,  ̂  g …  )  5  a  k 1 , f  ( m  <  …  ) ,

 where f  ( m  <  …  )  is gi y  en by  (2 . 7) .

 P ROOF .  This follows from Corollary (2 . 11) in exactly the same way that Theorem
 (A . 4) follows from Theorem (A . 3) in the Appendix .  h

 R EMARK .  Diaconis and Shahshahani [5] have applied this result in order to study
 the eigenvalues of random orthogonal and symplectic matrices .

 Hermite polynomials .  If  k  is even ,  then

 (2 . 14)  e ( k /2) t 2
 5  O

 m > 0

 k m t 2 m
 k

 2 m m !
 5  O

 m > 0

 k m t 2 m (2 m  2  1)!!
 (2 m )!

 5  O
 m > 0

 f k ( m )
 t m

 m !
 ,

 and ,  if  k  is odd ,

 (2 . 15)  e ( k /2) t 2 1 t  5  O
 m ,s > 0

 k s t 2 s 1 m

 2 s m ! s !
 5  O

 m ,s > 0

 k s t m (2 s  2  1)!!
 ( m  2  2 s )!(2 s )!

 5  O
 m ,s > 0

 k s (2 s  2  1)!! S m
 2 s
 D  t m

 m !
 5  O

 m > 0
 f k ( m )

 t m

 m !
 ,

 where  f k ( m ) is as defined in (2 . 7) .
 The Hermite polynomials  H m ( x ) are given by the following generating function :

 e 2 xt 2 t 2
 5  O

 m > 0
 H m ( x )

 t m

 m !
 .

 If we make a change of variables  t  5  t 4 2 k  / 2 in this generating function we obtain that

 e xt 4 2 2 k  1  ( k  / 2) t 2
 5  O

 m > 0
 ( 2 k  / 2) m /2 H m ( x )

 t m

 m !
 .

 Setting  x  5  2 4 2 1 / 2 k  ,

 (2 . 16)  e ( k /2) t 2 1 t  5  O
 m > 0

 ( 2 k  / 2) m /2 H m ( 4 2 1 / 2 k )
 t m

 m !
 ,

 and ,  setting  x  5  0 ,

 (2 . 17)  e ( k /2 k ) t 2
 5  O

 m > 0
 ( 2 k  / 2) m /2 H m (0)

 t m

 m !
 .

 It follows by comparing (2 . 14) ,  (2 . 15) and (2 . 16) ,  (2 . 17) that :

 (2 . 18)  P ROPOSITION .  The  y  alues f k ( m )  defined in  (2 . 7)  satisfy

 f k ( m )  5  ( 2 k  / 2) m /2 H m ( x ) ,  where  x  5 H 0 ,
 4 2 1 / 2 k  ,

 if  k  is  odd ,
 if  k  is  e y  en ,

 and H m ( x )  is the mth Hermite polynomial .
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 This means that several important traces on the Brauer algebra are given by products
 of Hermite polynomials .  It is not known whether this is merely coincidence or whether
 there is a good algebraic reason why they should be connected .  Combinatorially ,  it is
 not too surprising that the Hermite polynomials appear as it is well known [13] that the
 Hermite polynomials can be given a combinatorial interpretation in terms of
 k -matchings in complete graphs .  Since the  m -diagrams which form a basis of the
 Brauer algebra can be viewed as matchings in the complete graph on 2 m  points ,  it is
 not unreasonable that they should be related to the Hermite polynomials .

 3 .  A N  A PPLICATION   TO  W EYL  G ROUP  S YMMETRIC  F UNCTIONS

 Type A .  The Weyl group of type  A n 2 1  is the symmetric group  S n .  Define  L  5
 C [ x 1  ,  x 2 1

 1  ,  x 2  ,  x 2 1
 2  ,  .  .  .  ,  x n  ,  x  2 1

 n  ] s n  ,  i . e .  the set of  S n -invariant polynomials in
 x 1  ,  x 2  ,  .  .  .  ,  x n  ,  where  S n   acts by permuting the  n  variables .

 For each partition  l  5  ( l 1  ,  l 2  ,  .  .  .  ,  l n ) ,  define

 s l  5
 det( x  l j 1 n 2 j

 i  )
 det( x n 2 j

 i  )
 .

 The Schur functions  s l ,  form a basis of  L   [7 ,  Ch .  I (3 . 2)] .  Define an inner product on  L
 by defining

 k s l  ,  s m  l  5  d l m  .

 For each integer  r  .  0 ,  define  p r  5  o n
 i 5 1  x r

 i  ,  and for a partition  m  5  ( m  1  ,  m  2  ,  .  .  .  ,  m , )
 define  p m  5  p m  1  p m  2  ?  ?  ?  p m ,

 .  One has the following standard results .
 (Frobenius formula Type A ,  [7 ,  Ch .  I (7 . 8)]) Let  m  £  m .  Then

 (3 . 1)  p m  5  O
 l £ m

 χ  l
 S ( m  ) s l  ,

 where  χ  l
 S   is the irreducible character of  S m   corresponding to  l  £  m .

 ([7 ,  Ch .  I (4 . 7)]) Let  m   and  …   be partitions .  Then (assuming  n  large)

 (3 . 2)  k  p m  ,  p …  l  5  d m … m  ? ,

 where  m  ? is the constant given by  m  ?  5  1 m 1 m 1 !2
 m 2 m 2 !  ?  ?  ?  ,  if  m  5  (1 m 1 2 m 2  ?  ?  ? ) .

 Type B .  The Weyl group of type  B  is the hyperoctahedral group ,   H n  ,  of signed
 permutation matrices .   H n   can be given by generators  s 1  ,  s 2  ,  .  .  .  ,  s n   and relations

 s 2
 i  5  1 ,  1  <  i  <  n ,

 s i s j  5  s j s i  ,  u i  2  j u  .  1 ,

 s i s i 1 1 s i  5  s i 1 1 s i s i 1 1 ,  1  <  i  <  n  2  2 ,

 s n 2 1 s n s n 2 1 s n  5  s n s n 2 1 s n s n 2 1 .

 Let  x 1  ,  x 2  ,  .  .  .  ,  x n   be commuting variables .  Define an action of  H n   on
 C [ x 1  ,  x 2 1

 1  ,  x 2 ,  x  2 1
 2  ,  .  .  .  ,  x n  ,  x 2 1

 n  ]   by

 s i x j  5 5  x i 1 1  ,

 x i  ,

 x j  ,

 if  j  5  i ,

 if  j  5  i  1  1 ,

 otherwise ,
 for  1  <  i  <  n  2  1 ,
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 and

 s n x j  5 H x  2 1
 n  ,

 x j  ,

 if  j  5  n ,
 otherwise .

 Define  L b  5  C [ x 1  ,  x  2 1
 1  ,  x 2  ,  x 2 1

 2  ,  .  .  .  ,  x n  ,  x  2 1
 n  ] H n   so that  L b   is the set of  H n -invarinat

 Laurent polynomials in  x 1  ,  x 2  ,  .  .  .  ,  x n .
 For each partition  l  5  ( l 1  ,  l 2  ,  .  .  .  ,  l n ) define

 (3 . 3)  sb l  5
 det( x  l j 1 n 2 j 1 1 – 2

 i  2  x  2 ( l j 1 n 2 j 1 1 – 2 )
 i  )

 det( x n 2 j 1 1 – 2
 i  2  x 2 ( n 2 j 1 1 – 2 )

 i  )
 .

 The  sb l   form a basis of  L b .  (A general proof ,  for any Weyl group ,  is given in [2 ,
 Ch .  VI ,   § 3 . 3 Prop .  2] .  This proof is essentially the same as that given for type A in [7 ,
 Ch .  I (3 . 2)] . ) Define an inner product on  L b   by defining

 k sb l  ,  sb m  l b  5  d l m .

 For each integer  r  .  0 ,  define  pb r  5  1  1  o n
 i 5 1  x r

 i  1  x  2 r
 i  ,  and for a partition  m  5

 ( m  1  ,  m  2  ,  .  .  .  ,  m , )   define  pb m  5  pb m  1  pb m  2  ?  ?  ?  pb m ,
 .  The following analogue of (3 . 1) is

 proved in [9] .  We shall give a new ,  almost completely combinatorial ,  proof in Section 5 :

 (3 . 4)  T HEOREM  (Frobenius formula Type B) .  Suppose that n    m . Let  m  P  B ̂  m  and
 suppose that  m  £  m  2  2 k . Then

 x k
 pb m

 5  O
 l P B ̂  m

 χ  l ( E  ̂  k  ̂  g m  ) sb l ,

 where  χ  l   is the irreducible character of B m ( x )  corresponding to  l  P  B ̂  m  and E  ̂  k  ̂  g m   is
 as in  (2 . 4) .

 (3 . 5)  T HEOREM .  Let  m   and  …   be partitions and let k  5  u ( u m  u  2  u …  u ) u . Suppose that
 m  5  (1 m 1 2 m 2  ?  ?  ? )  and  …  5  (1 n 1 2 n 2  ?  ?  ? )  and define  m  <  …  5  (1 m 1 1 n 1 2 m 2 1 n 2  ?  ?  ? ) . Then
 ( assuming n large )

 k  pb m  ,  pb …  l b  5 H 0 ,

 f  ( m  <  …  ) ,

 if  k  is  odd ,

 otherwise ,

 where f  ( m  <  …  )  is gi y  en as in  (2 . 7) .

 P ROOF .  Let us suppose ,  for convenience ,  that  u m  u  >  u …  u .  Let  k  5  u m  u  2  u …  u   and let
 m  5  u m  u .  Then ,  by (3 . 4) ,

 pb m  5  O
 l P B ̂  m

 χ  l ( g m  ) sb l  and  x k /2 pb …  5  O
 l P B ̂  m

 χ  l ( E  ̂  ( k /2)  ̂  g …  ) sb l  .

 Thus ,

 k  pb m  ,  x k /2 pb …  l  5  O
 l P B ̂  m

 χ  l ( g m ) χ  l ( E  ̂  ( k /2)  ̂  g …  ) .

 The result now follows from (2 . 13) .  h

 Type C .  The Weyl group of type  C  is the hyperoctahedral group ,   H n  ,  just as in the case
 of type  B .  Define  L c  5  C [ x 1  ,  x  2 1

 1  ,  x 2  ,  x  2 1
 2  ,  .  .  .  ,  x n  ,  x 2 1

 n  ] H n  ,  where the action of  H n   on
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 C [ x 1  ,  x 2 1
 1  ,  x 2  ,  x 2 1

 2  ,  .  .  .  ,  x n  ,  x  2 1
 n  ] is the same as in the case of type  B .  For each partition

 l  5  ( l 1  ,  l 2  ,  .  .  .  ,  l n )   define

 sc l  5
 det( x  l j 1 n 2 j 1 1

 i  2  x 2 ( l j 1 n 2 j 1 1)
 i  )

 det( x n 2 j 1 1
 i  2  x 2 ( n 2 j 1 1)

 i  )
 .

 The  sc l   form a basis of  L c   Define an inner product on  L c   by defining

 h sc l  ,  sc m  l c  5  d l m .

 For each integer  r  .  0 ,  define  pc r  5  o m
 i 5 1  x r

 i  1  x  2 r
 i    and ,  for a partition  m  5

 ( m  1  ,  m  2  ,  .  .  .  ,  m , ) ,  define  pc m  5  pr m  1
 pc m  2

 ?  ?  ?  pc m ,
 .

 The following analogue of (3 . 1) is proved in [9] .

 (3 . 6)  T HEOREM  (Frobenius formula type C) .  Suppose that n    m . Let  m  P  B ̂  m  and
 suppose that  m  £  m  2  2 k . Then

 (3 . 7)  x k ( 2 1) u m  u 2 , ( m  ) pc m  5  O
 l P B ̂  m

 χ  l 9 ( E  ̂  k  ̂  g m ) sc l  ,

 where  χ  l   is the irreducible character of B m ( x )  corresponding to  l  P  B ̂  m  ,  l 9   denotes the
 conjugate partition to  l   and E  ̂  k  ̂  g m   is as in  (2 . 4) .

 (3 . 8)  T HEOREM .  Let  m   and  …   be partitions and let k  5  u ( u m  u  2  u …  u ) u . Suppose that
 m  5  (1 m 1 2 m 2  ?  ?  ? )  and  …  5  (1 n 1 2 n 2  ?  ?  ? )  and define  m  <  …  5  (1 m 1 1 n 1 2 m 2 1 n 2  ?  ?  ? ) . Then
 ( assuming n large )

 k  pc m  ,  pc …  l c  5 H 0 ,

 ( 2 1) u m  < …  u 2 , ( m  < …  ) f  ( m  <  …  ) ,

 if  k  is  odd ,

 otherwise ,

 where f  ( m  <  …  )  is gi y  en as in  (2 . 7) .

 P ROOF .  The proof is exactly analogous to the proof of Theorem (3 . 5) for type  B .
 h

 Type D .  A similar result follows in exactly the same way for type  D ,  but there are
 some annoying special cases which must be considered .  We shall not unwind these
 here :  the proof of an analogue of the Theorem is exactly the same ,  and we refer the
 reader to [9] for the appropriate definitions and analogue of (3 . 1) .

 4 .  A ‘S ECOND  O RTHOGONALITY ’  VIA  T OOLS   FROM  D IFFERENTIAL  P OSETS

 The following approach and a sketch of the proof of Theorem (4 . 12) below was given
 by R .  Stanley after a lecture by the author at the LABRI at the University of Bordeaux
 I in which the results of Sections 2 and 3 were presented .  The combinatorial description
 of the characters of the Brauer algebras was given in [9] .  In Section 2 we derived the
 ‘second orthogonality’ for the irreducible characters of the Brauer algebra by appealing
 to facts from representation theory .  Stanley’s approach ,  given below ,  proves this
 orthogonality directly from the combinatorial interpretation of the irreducible charac-
 ters .  In this paper we are turning the picture upside down and in Section 5 the result ,
 Theorem (4 . 12) ,  from this approach of Stanley’s will be combined with the results from
 Sections 2 to give a new derivation of the irreducible characters of the Brauer algebras .
 Thus ,  for the moment ,  we do not know that the numbers  h  l ( m  ) in Proposition (4 . 11)
 actually are the irreducible characters of the Brauer algebras .
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 Let  L   denote the ring of symmetric functions .  We shall view  L   as the polynomial ring

 (4 . 1)  L  5  Q [  p 1  ,  p 2  ,  .  .  . ] ,

 where  p k   denotes the  k th power sum symmetric function .  Given a partition  m  5
 (1 m 1 2 m 2  ?  ?  ? ) ,  let  m  ?  5  p i  i m i m i ! and let  p m  5  p m 1

 1  p m 2
 2  ?  ?  ?  .  For each pair of partitions  l  ,

 m  ,  let  χ  l
 S ( m  ) denote the irreducible character of the symmetric group corresponding to

 l   evaluated at a conjugacy class labelled by  m .  The Schur functions are given by

 s l  5  O
 m  £ m

 χ  l
 S ( m  )
 m  ?

 p m  ,

 and form a basis of  L .  There is a standard inner project on  L   which satisfies

 (4 . 2)  k s l  ,  s m  l  5  d l m  ,  k p l  ,  p m  l  5  d l m m  ? .

 Viewing elements of  L   as elements of the polynomial ring (4 . 1) [7 ,  I  § 5 Ex .  3c] shows
 that the operator  k  ­ –

 ­ p k
   is the adjoint of multiplication by  p k ;  i . e .,  for any  f ,  g  P  L ,

 (4 . 3)  k  p k  f ,  g l  5 K f ,  k
 ­

 ­ p k
 g L .

 We have that

 (4 . 4)  k
 ­

 ­ p k
 p k  2  p k k

 ­

 ­ p k
 5  k  ?  1 ,

 as operators on  L .  Define a generating function as follows :

 GF  5 F  P
 k  odd

 e S p k  1  k
 ­

 ­ p k D t k  P
 k  even

 e S p k  1  1  1  k
 ­

 ­ p k D t k G  ?  1 .

 We view the product in square brackets as an operator acting on 1  P  L .   GF  is an
 element of  Q [ t 1  ,  t 2  ,  .  .  . ]  ̂  L .  For each pair of partitions  l  ,  m  ,  define values  h  l ( m  ) by

 (4 . 5)  GF  5 O
 m

 t m

 m  !
 O
 l

 h  l ( m  ) s l  ,

 where  t m  / m  ! is defined by

 t m

 m  !
 5

 t m 1
 1

 m 1 !
 t m 2
 2

 m 2 !
 ?  ?  ?  if  m  5  (1 m 1 2 m 2  ?  ?  ? ) .

 We shall need the following identity from Stanley’s work on dif ferential posets ,  [11 ,
 Cor .  2 . 6a] :

 (4 . 6)  e S p k  1  k
 ­

 ­ p k D t k  5  e
 1 – 2 kt 2

 k  1  p k t k e k
 ­

 ­ p k
 t k ,

 e S p k  1  1  1  k
 ­

 ­ p k D t k  5  e
 1 – 2 kt 2

 k  1  t k  1  p k t k e k
 ­

 ­ p k
 t k  .

 (4 . 7)  T HEOREM .  Let  m   be a partition , let f  ( m  )  be gi y  en by  (2 . 7)  and let  h  [ ( m  )  be as
 gi y  en in  (4 . 5) . Then

 h  [ ( m  )  5  f  ( m  ) .

 P ROOF .  It follows from Stanley’s identity (4 . 6) that

 GF  5 F  P
 k  odd

 e
 1 – 2 kt 2

 k  1  p k t k e k
 ­

 ­ p k
 t k  P

 k  even
 e

 1 – 2 kt 2
 k  1  t k  1  p k t k e k

 ­
 ­ p k

 t k G  ?  1 .
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 Note that the operator  k  ­ –
 ­ p k

   commutes with all of the operators  p j   and  j  ­ –
 ­ p j

   except  p k .
 Thus ,  we may write

 GF  5 F  P
 k  odd

 e
 1 – 2 kt 2

 k  1  p k t k  P
 k  even

 e
 1 – 2 kt 2

 k  2  t k  1  p k t k  P
 k

 e k
 ­

 ­ p k
 t k G  ?  1 .

 Since  k  ­ –
 ­ p k

 ?  1  5  0 for all  k ,

 e k
 ­

 ­ p k
 t k  ?  1  5  1

 and we obtain that

 GF  5 F  P
 k  odd

 e
 1 – 2 kt 2

 k  1  p k t k  P
 k  even

 e
 1 – 2 kt 2

 k  1  t k  1  p k t k G  ?  1

 5 F  P
 k  odd

 e
 1 – 2 kt 2

 k  P
 k  even

 e
 1 – 2 kt 2

 k  1  t k  P
 k

 e p k t k G  ?  1 .

 It is clear from the action of  p k   on  L   that the coef ficient of s [  5  1 in e p k t k  ?  1 is 1 .  Thus ,

 GF U
 s [

 5  P
 k  odd

 e
 1 – 2 kt 2

 k  P
 k  even

 e t k  .

 Thus ,  if  m  5  (1 m 1 2 m 2  ?  ?  ? ) ,

 h  [ ( m  )  5  GF U  t m

 m  !  s [

 5  P
 k  odd

 e
 1 – 2 kt 2

 k U  t m k

 m k !

 P
 k  even

 e
 1 – 2 kt 2

 k  1  t k U  t m k

 m k !

 .

 The theorem now follows from (4 . 5) .  h

 A combinatorial description of  h  l ( m  ) .  A border strip is a connected skew diagram that
 does not contain any 2  3  2 block of boxes .  It is shown in [7 ,  I  § 3 Ex .  11] that

 (4 . 8)  p k s l  5  O
 … “ l

 ( 2 1) r ( …  / l ) 2 1 s …  ,

 where the sum is over all partitions  …  “  l   such that  …  / l   is a border strip of length  k  and
 r ( …  / l ) is the number of rows in  …  / l .  It follows easily from (4 . 2) and (4 . 3) that

 (4 . 9)  k
 ­

 ­ p k
 s l  5  O

 m  ‘ l
 ( 2 1) r ( l / m  ) 2 1 s m  ,

 where the sum is over all partitions  m  ‘  l   such that  l  / …   is a border strip of length  k
 and  r ( l  / …  ) is the number of rows in  l  / … .

 Given partitions  l   and  m  ,  we shall say that  l   dif fers from  m   by a border strip if either
 l  ‘  m   and  l  / m   is a border strip or  m  ‘  l   and  m  / l   is a border strip .  We shall denote the
 border strip determined by  l   and  m   by bs( l  ,  m  ) .  The length of a border strip is the
 total number of boxes in the border strip .  The weight of a border strip bs( l  ,  m  ) is

 wt(bs( l  ,  m  ))  5  ( 2 1) k 2 1 ,

 where  k  is the number of rows occupied by bs( l  ,  m  ) .  We shall make the convention
 that wt(bs( l  ,  l ))  5  1 .

 Let  l   and  m  5  ( m  1  ,  m  2  ,  .  .  .  ,  m k ) be partitions .  A  m  -up – down border strip tableau of
 shape  l   is a sequence of partitions

 T  5  ( [  5  l ( 0 ) ,  l ( 1 ) ,  .  .  .  ,  l ( k )  5  l )
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 such that for each 1  <  j  <  k  either :
 (1)  l (  j )  dif fers from  l (  j 2 1)  by a border strip of length  m j  ,  or
 (2)  m j   is even and  l ( j )  5  l ( j 2 1 ) .
 define the weight of the tableau  T  to be

 (4 . 10)  et( T  )  5  P k
 j 5 1

 wt(bs( l ( j ) ,  l ( j 2 1 ) )) .

 The following proposition follows from (4 . 8) and (4 . 9) and the definition of the  h  l   in
 (4 . 5) .

 (4 . 11)  P ROPOSITION .  Let  m   be a partition of m and let  l   be a partition of m  2  2 , . Then

 h  l ( m  )  5 O
 T

 wt( T  ) ,

 where the sum is o y  er all  m  - up  – down border strip tableaux of shape  l   and  wt( T  )  is as
 gi y  en in  (4 . 10) .

 A  ‘ second orthogonality relation ’  for  h  l ( m  )

 (4 . 12)  T HEOREM .  Let  m   and  …   be partitions of m . Suppose that  m  5  (1 m 1 2 m 2  ?  ?  ? )  and
 …  5  (1 n 1 2 n 2  ?  ?  ? )  and define  m  <  …  5  (1 m 1 1 n 1 2 m 2 1 n 2  ?  ?  ? ) . Then

 O
 l £ m 2 2 k

 h  l ( m  ) h  l ( …  )  5  h  [ ( m  <  …  )  5  f  ( m  <  …  ) ,

 where the sum is o y  er all  l   partitions of m  2  2 k ,  0  <  k  <   m  / 2  , and f  ( m  <  …  )  is gi y  en
 by  (2 . 7) .

 P ROOF .  The left-hand side can be written as

 O
 l £ m 2 2 k

 h  l ( m  ) h  l ( …  )  5  O
 l £ m 2 2 k

 O
 ( T ,  S )

 wt( T  )wt( S ) ,

 where the inner sum is over all pairs ( T ,  S ) such that

 T  5  ( [  5  r  ( 0 ) ,  r  ( 1 ) ,  .  .  .  ,  r  ( r )  5  l )  and  S  5  ( [  5  τ  ( 0 ) ,  τ  ( 1 ) ,  .  .  .  ,  τ  ( s )  5  l ) ,

 are  m   and  …  -up – down border strip tableaux of shape  l   respectively .  Given a pair
 ( T ,  S ) ,  the tableau

 T  p  S  5  ( [  5  r  ( 0 ) ,  .  .  .  ,  r  ( r )  5  l  5  τ  ( s ) ,  τ  ( s 2 1) ,  .  .  .  ,  τ  ( 0 )
 5  [ ) ,

 is a  m  <  …   up – down border strip tableau of shape  [ .  It is clear from the definition of
 the weight of an up – down border strip tableaux that wt( T  )wt( S )  5  wt( T  p  S ) .  So

 O
 l £ m 2 2 k

 h  l ( m  ) h  l ( …  )  5  O
 l £ m 2 2 k

 O
 ( T ,  S )

 wt( T  )wt( S )  5  O
 T  p S

 wt( T  p  S )  5  h  [ ( m  <  …  ) .

 The second equality now follows from Theorem (4 . 7) .  h

 5 .  T HE  I RREDUCIBLE  C HARACTERS   OF THE  B RAUER  A LGEBRA

 The goal of this is section to show that one can use the ‘second orthogonality
 relations’ to give a proof of the Frobenius formula and a derivation of the characters of
 the Brauer algebras which is elementary in the sense that it does not use
 (1)  the fundamental theorem of invariant theory for the orthogonal group ,  or
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 (2)  the Weyl character formula for the orthogonal group .
 We will ,  however ,  make the following assumption :
 (3)  for a given  m ,  the Brauer algebra  B m ( n ) is semisimple for some  n  P  C   and the
 number of irreducible components is the number of partitions in the set  B ̂  m  5
 h l  £  m  2  2 k ,  0  <  k  <   m  / 2  j .

 R EMARK .  To my knowledge ,  it is still not known how to prove (3) without using (1) .
 It is actually clear that (3) is true from Brauer’s derivation of the Brauer algebra [3] ,
 which uses (1) .  Of course ,  much stronger results concerning the semisimplicity of the
 Brauer algebra are known ;  see [14] .  A previous proof [9] of the Frobenius formula for
 the Brauer algebra used both (1) and (2) in a crucial way .  It would be nice to be able to
 remove the second part of the assumption given in (3) above .  For this ,  it would be
 suf ficient to prove combinatorially that the center of the Brauer algebra has dimension
 greater than or equal to Card( B ̂  m ) .

 We need to collect some standard facts from representation theory and symmetric
 functions in the context of this special case .  Although the general results appear in
 some form in the literature [1 ,  Ch .  VIII ;  2 ,  Ch .  VI ;  7] ,  we shall include the proofs for
 completeness ,  since the proofs are short and it is hard to give good references for these
 special cases .

 (5 . 1)  L EMMA .  If there exists n  P  C   such that B m ( n )  is semisimple , then , for all but a
 finite number of n  P  C , B m ( n )  is semisimple .

 P ROOF .  Let Tr denote the trace of the regular representation of  B m ( n ) .  Let  Ω m   be
 the basis of  B m ( n ) given by the  m -diagrams .  Defilne the Gram matrix  G ( n )  5
 (Tr( d i d j ))   with rows and columns indexed by the elements  d i  P  Ω m . B m ( n ) is
 semisimple if det( G )  ?  0 .  Let Tr x   denote the trace of the regular representation of
 B m ( x ) .  Let  G ( x )  5  (Tr x ( d i d j )) .  Then ,  since Tr x ( d i d j ) is a polynomial in  x  for all pairs
 i ,  j ,  det( G ( x )) is polynomial in  x .  By assumption ,  there exists an  n  P  C   such that  B m ( n )
 is semisimple .  So det( G ( n ))  ?  0 for some  n  P  C .  Thus det( G ( x ))  ?  0 and ,  consequently ,
 det( G ( n ))  ?  0 for all but a finite number of  n  P  C .  h

 Weight space representations .  Let  I  5  h 2 n ,  2 ( n  2  1) ,  .  .  .  ,  2 2 ,  2 1 ,  0 ,  1 ,  2 ,  .  .  .  ,  n  2
 1 ,  nS j .  Let  h y  i  3  i  P  I j   be a set of independent non-commuting variables .  Define  V  to be
 the vector space over  C   with basis  h y  i  3  i  P  I j ,  and define

 V  ̂  m  5  C  2  span h y  i 1
 y  i 2

 ?  ?  ?  y  i m  3  i k  P  I j ,

 so that the words (simple tensors)  y  i 1
 y  i 2

 ?  ?  ?  y  i m   are a basis of  V  ̂  m .
 Let  x 1  ,  x 2  ,  .  .  .  ,  x n   be commuting ,  independent variables .  Define  x 0  5  1 and  x 2 i  5  x 2 1

 i

 for  i  5  1 ,  2 ,  .  .  .  ,  n ,  so that  x i   is defined for each  i  P  I .  Define the  weight  of each word
 y  i 1

 ?  ?  ?  y  i m   of  V  ̂  m   to be

 wt( y  i 1
 ?  ?  ?  y  i m )  5  x i 1

 ?  ?  ?  x i m  .

 Note that the weight of a word is always of the form  x a  5  x a 1
 1  x a 2

 2  ?  ?  ?  x a n
 n  ,  where

 a  5  ( a 1  ,  a 2  ,  .  .  .  ,  a n )  P  Z n .  For each sequence  a  P  Z n ,  define

 ( V  ̂  m ) a  5  C  2  span h y  i 1
 ?  ?  ?  y  i m  3  wt( y  i 1

 ?  ?  ?  y  i m )  5  x a j .
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 For 0  <  k  <  m  2  1 ,  define an action of the generators  G k   and  E k   of  B m (2 n  1  1) ,
 defined in (2 . 2) ,  on  V  ̂  m   by

 (5 . 2)
 ( y  i 1

 y  i 2
 ?  ?  ?  y  i m ) G k  5  y  i 1

 ?  ?  ?  y  i k 2 1
 y  i k 1 1

 y  i k y  i k 1 2
 ?  ?  ?  y  i m  ,

 ( y  i 1 y  i 2  ?  ?  ?  y  i m ) E k  5  d  i k j 2 i k 1 1  O
 j P I

 y  i j  ?  ?  ?  y  i k 2 1 y  j y  2 j y  i k 1 2  ?  ?  ?  y  i m .

 By writing out explicitly the action of a general  m -diagram one checks easily that the
 action defined in (5 . 2) extends to a well-defined action of  B m (2 n  1  1) on  V  ̂  m .  Since
 the action of the Brauer algebra on  V  ̂  m   does not change the weights of the words ,
 ( V  ̂  m ) a   is always a  B m ( n ) submodule of  V  ̂  m .

 Let  H n   denote the hyperoctahedral group of  n  3  n  signed permutation matrices
 defined by generators and relations in Section 3 .  Define an action of  H n   on the
 variables  y  i  ,  i  P  I ,  by

 s i y  j  5 5  y  Ú ( i 1 1) ,

 y  Ú i ,

 y  j  ,

 if  j  5  Ú i ,

 if  j  5  Ú ( i  1  1) ,
 otherwise ,

 for  1  <  i  <  n  2  1 ,

 and

 s n y  j  5 H y  Ò n ,

 y  j  ,

 if  j  5  Ú n ,

 otherwise .

 and define an action of  W n   on  V  ̂  m   by  w ( y  i 1  ?  ?  ?  y  i m )  5  y  w ( i 1 )  ?  ?  ?  y  w ( i m ) .  Define an action
 of  H n   on monomials  x i 1  ?  ?  ?  x i m   and on sequences  a  5  ( a 1  ,  .  .  .  ,  a n )  P  Z n   by requiring
 that ,  for all words  y  i 1  ?  ?  ?  y  i m   and  w  P  H n  ,

 (5 . 3)  If  wt( y  i 1
 ?  ?  ?  y  i m )  5  x a 1

 1  ?  ?  ?  x a n
 n  5  x a ,  then  wt( w ( y  i 1

 ?  ?  ?  y  i m ))  5  w ( x a )  5  x w a .

 (5 . 4)  P ROPOSITION .  For each a  P  Z n , define  l ( a )  to be the partition determined by
 rearranging the sequence  ( u a 1 u ,  u a 2 u ,  .  .  .  ,  u a n u )  into decreasing order . Then

 ( V  ̂  m ) a  .  ( V  ̂  m ) l ( a ) ,

 as B m (2 n  1  1)  modules .

 P ROOF .  Let  w  P  H n   and let  a  P  Z n .  We first show that the action of  w  gives a
 B m (2 n  1  1)   module isomorphism

 w :  ( V  ̂  m ) a  5  ( V  ̂  m ) wa .

 The fact that  w  is a vector space isomorphism from ( V  ̂  m ) a   to ( V  ̂  m ) w a   follows from
 (5 . 3) and the fact that  w  is invertible .  To show that  w  is a  B m (2 n  1  1)-module
 isomorphism we must show that  w  commutes with the action of  B m (2 n  1  1) on  V  ̂  m .
 One checks this for the generators  G i  , E i  ,  1  <  i  <  m  2  1 ,  of  B m (2 n  1  1) ,  with
 computations determined by

 w (( y  i 1 y  1 2 ) G )  5  y  w ( i 2 ) y  w ( i 1 )  5  ( w ( y  i 1 y  i 2 )) G ,

 and

 w (( y  i 1 y  i 2 ) E )  5  d  i 2 i 2  O
 i P I

 y  w ( i ) y  w ( 2 i )  5  d  w ( i 1 ) w ( i 2 )  O
 i P I

 y  i y  2 1  5  ( w ( y  i 1 y  i 2 )) E ,
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 where  G  and  E  denote the generators of  B 2 (2 n  1  1) acting on  V  ̂  2 .  The proposition
 now follows by choosing an appropriate element  w  P  H n   such that  wa  5  l .  h

 Symmetric functions , type B .  The Weyl group of type  B  is the hyperoctahedral group ,
 H n  ,  of signed permutation matrices defined by generators and relations in Section 3 .
 Let  x 1  ,  x 2  ,  .  .  .  ,  x n   be commuting variables .  There is an action of  H n   on
 C [ x 1  ,  x 2 1

 1  ,  x 2  ,  x 2 1
 2  ,  .  .  .  ,  x n  ,  x  2 1

 n  ]   given by extending linearly the action of  H n   on
 monomials given in (5 . 3) .  Define  L b  5  C [ x 1  ,  x  2 1

 1  ,  x 2  ,  x 2 1
 2  ,  .  .  .  ,  x n  ,  x  2 1

 n  ] H n   so that  L b   is
 the set of  H n -invariant Laurent polynomials in  x 1  ,  x 2  ,  .  .  .  ,  x n .

 For each  a  P  Z n ,  let  x  a   denote  x  a  1
 1  ?  ?  ?  X  a n

 n    and define an action of  H n   on  Z n ,  such
 that  wx l  5  x w l   for all  w  P  H n   and all  l  P  Z n .  For each partition  l  5  ( l 1  ,  l 2  ,  .  .  .  ,  l n )
 define the monomial symmetric function  mb l   by

 mb l  5  O
 a P H n l

 x a ,

 where  H n l   is the  H n   orbit of  l   in  Z n .  Also recall from (3 . 3) that ,  for each partition
 l  5  ( l 1  ,  l 2  ,  .  .  .  ,  l n ) ,  one defines

 sb l  5
 det( x  l j 1 n 2 j 1 1 – 2

 i  2  x  2 ( l j 1 n 2 j 1 1 – 2 )
 i  )

 det( x n 2 j 1 1 – 2
 i  2  x 2 ( n 2 j 1 1 – 2 )

 i  )
 .

 and that the  sb l   form a basis of the symmetric function ring  L b .
 For each  w  P  H n  ,  let  »  ( w )  5  det( w ) denote the  sign  of  w .  Let  !   be the vector space

 of alternating polynomials in  Z [ x
 1 – 2
 1 ,  x  2 1 – 2

 2  ,  x
 1 – 2
 2 ,  x  2 1 – 2

 2  ,  .  .  .  ,  x
 1 – 2
 n ,  x  2 1 – 2

 n  ] ,  i . e .  polynomials  f  such
 that  wf  5  »  ( w ) f  for all  w  P  H n .  Let  r  5  ( n  2  1 – 2  ,  n  2  3 – 2  ,  .  .  .  ,  3 – 2  ,  1 – 2 ) .  Then ,  since the
 elements

 b …  1 r  5  O
 w P H n

 »  ( w ) x w ( …  1 r  ) ,

 where  l   is a partition ,  have no common terms ,  they are linearly independent elements
 in  !  .  Furthermore ,  it is not dif ficult to see that

 (5 . 5)  sb …  5
 b …  1 r

 b r

 .

 (5 . 6)  L EMMA .  The  y  alues Kb  2 1
 l m   determined by

 mb m  5 O
 l

 Kb 2 1
 m l sb l

 are all integers .

 P ROOF .  Multiplying both sides of the defining relation for the values  Kb 2 1
 l m   by the

 alternating polynomial  b r   and using (5 . 5) gives

 mb m  b r  5 O
 l

 Kb  2 1
 m l b l 1 r  ,

 which is a relation in vector space  !   of alternating polynomials in  Z [ x
 1 – 2
 1 1 , x 2 1 – 2

 1  , x
 1 – 2
 2 , x  2 1 – 2

 2  ,
 .  .  .  , x

 1 – 2
 n ,  x  2 1 – 2

 n  ] .  It follows that  Kb  2 1
 l m  5  mb m  b r 3 x  l 1 r .  Thus  Kb 2 1

 l m   is an integer .  h

 A completely combinatorial proof of the above lemma ,  which actually determines a
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 combinatorial rule for computing the coef ficients  Kb 2 1
 l m  ,  can be given in exactly the

 same way that Theorem (6 . 8) is proved in [9] .
 Recall the definition of the  power symmetric functions pb l   from Section 3 .  Let  B ̂  m   be

 as defined in the beginning of this section and ,  for each pair of partitions  l  ,  m  P  B ̂  m   let
 h  l ( m  )   denote the numbers defined in (4 . 5) ,  given by

 h  l ( m  )  5 O
 T

 wt( T  ) ,

 where the sum is over all  m  -up – down border strip tableaux  T  of shape  l .

 (5 . 7)  L EMMA .  For each  m  P  B ̂  m

 pb m  5  O
 l P B ̂  m

 h  l ( m  ) sb l  .

 P ROOF .  This follows by induction from the identity

 pb r sb l  5 O
 m

 wt( bs ( l  ,  m  )) sb m  ,

 where the sum is over all partitions  m   such that  m   dif fers from  l   by a border strip ;  we
 also include the case  m  5  l   when  r  is even .  This identity is proved in exactly the same
 fashion as [7 ,  I  § 3 Ex .  11] .  A complete derivation of this formula appears in [9 ,
 Theorem (6 . 8)] .  h

 (5 . 8)  P ROPOSITION .  For each a  P  Z n , let  b a  :  B m (2 n  1  1)  5  C   denote the character of
 B m (2 n  1  1)  acting on the weight space representation  ( V  ̂  m ) a  . Let pb m   denote the power
 symmetric function as defined in Section  3  and let mb m   denote the monomial symmetric
 function defined abo y  e . Then , for each  m  £  m  2  2 k  P  B ̂  m  ,

 (2 n  1  1) k pb m  5 O
 l

 b l ( E  ̂  k  ̂  g m  ) mb l  ,

 where E  ̂  k  ̂  g m   is as defined as in  (2 . 4) .

 P ROOF .  Define a weighted trace of  B m (2 n  1  1) acting on  V  ̂  m   by

 (5 . 9)  wtr( b )  5  O
 i 1 , . . . ,i m

 y  i 1  ?  ?  ?  y  i m b 3 y  i 1  ?  ?  ?  y  i m
 wt( y  i 1  ?  ?  ?  y  i m ) ,

 for each  b  P  B m (2 n  1  1) ,  where the sum is over all sequences  i 1  ,  i 2  ,  .  .  .  ,  i m   with  i j  P  I ,
 and where  y  i 1

 ?  ?  ?  y  i m b 3 y  i 1  ?  ?  ?  y  i m
   is the coef ficient of  y  i 1  ?  ?  ?  y  i m   in  y  i 1

 ?  ?  ?  y  i m b .  Using
 Proposition (5 . 4) ,  we have that  b a  5  b l ( a )  for all  a  P  Z n .  Thus ,  for all  b  P  B m (2 n  1  1) ,

 (5 . 10)  wtr( b )  5 O
 a

 b  a ( b ) x a  5 O
 l

 b l ( b ) mb l  .

 where  mb l  5  o a P H n l  x a .  Let  g r   and  E  be as defined in (2 . 4) .  Then an easy computation
 shows that wtr( g r )  5  1  1  o n

 i 5 1  x r
 i  1  x  2 r

 i  ,  and wtr( E )  5  2 n  1  1 .  The proposition now
 follows from (5 . 10) and the easy fact that

 wtr( E  ̂  k  ̂  g m  )  5  wtr( E ) k  wtr( g m  1
 )wtr( g m  2

 )  ?  ?  ?  5  (2 n  1  1) k pb m  1
 pb m  2

 ?  ?  ?  .  h
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 Irreducible characters of Brauer algebras

 (5 . 11)  T HEOREM .  Let n    m . Let the  y  alues  h  l ( m  ) ,  for  l  ,  m  P  B ̂  m  be gi y  en as in  (4 . 5) .
 Define the characters  χ  l  ,  l  P  B ̂  m  on B m (2 n  1  1)  by defining

 χ  l ( E  ̂  k  ̂  g m  )  5  (2 n  1  1) k h  l ( m  ) ,

 for each partition  m  P  B ̂  m . Then , up to a permutation of the elements of B ̂  m  , the
 characters  χ  l   are the irreducible characters of B m (2 n  1  1) .

 P ROOF .  Since the functions  b l   are the characters of the weight spaces ( V  ̂  m ) l   it
 follows that ,  for each partition  l  P  B ̂  m  ,

 b l  5  O
 …  P B ̂  m

 C l …  χ  …

 where  χ  …  ,  …  P  B ̂  m   denote the irreducible characters of  B m ( n ) and where the  C l m   are all
 non-negative integers .  Then ,  for each partition  m  P  B ̂  m  ,

 O
 …

 (2 n  1  1) k h  l ( m  ) sb l  5  (2 n  1  1) k pb m  ,  by  Lemma  (5 . 7) ,

 5 O
 l  , …

 b l ( m  ) Kb  2 1
 l …  sb …  ,  by  Propositions  (5 . 8)  and  (5 . 6) ,

 5  O
 g  , l  , …

 Kb 2 1
 l …  C l g χ  g ( m  ) sb …  .

 Thus ,  if we define matrices

 Kb 2 1  5  ( Kb  2 1
 l m ) l  , m  P B ̂  m

 ,  C  5  ( C l …  ) l  , m  P b ̂  m
 ,

 h  5  ((2 n  1  1) k h  l ( m  )) l  , m  P B ̂  m
 ,  χ  5  ( χ  l ( m  )) m  , m  P B ̂  m

 ,

 then  h  5  D χ  ,  where the matrix  D  5  ( Kb  2 1 ) t C  is such that all entries are integers .  It is
 because of Lemma (5 . 1) that we know that for  n  suf ficiently large the matrix  χ   is square
 and has rows and columns indexed by the elements of  B ̂  m .

 It follows from the ‘second orthogonality relations’ (2 . 13) and (4 . 12) that

 l t χ  5  h  t h  5  χ  t D  t D χ .

 Thus  χ  t χ  5  χ  t D  t D χ  ,  and since the character table of a semisimple algebra is always
 invertible ,  this implies that  D t D  5  I ,  where  I  is the identity matrix .  Since  D  is a matrix
 with all integer entries and  D t D  5  I ,  one can show easily that  D  is a signed permutation
 matrix ,  i . e .  a matrix with exactly one non-zero entry ,  equal to  Ú 1 ,  in each row and each
 column .

 We know that  χ  l (1 m ) is the dimension of the irreducible representation of  B m ( n )
 indexed by  l   and therefore  χ  l (1 m )  .  0 .  Since ,  by Proposition (4 . 12) ,   h  l (1 m ) is the
 number of up – down tableaux of shape  l   and length  m ,  we have that  h  l (1 m )  .  0 for all
 l  P  B ̂  m .  Since  h  5  D χ  ,  it follows that  D  cannot have negative entries .  Therefore  D  is a
 permutation matrix .  The theorem follows .  h

 The following Frobenius formula given in Theorem (3 . 4) is now an immediate
 corollary of Theorem (5 . 11) and Lemma (5 . 7) .

 (5 . 12)  T HEOREM  (Frobenius formula Type B) .  Suppose that n    m . Let  m  P  B ̂  m  and
 suppose that  m  £  m  2  2 k . Then

 (2 n  1  1) k pb m  5  O
 l P B ̂  m

 χ  l ( E  ̂  k  ̂  g m  ) sb l  ,
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 where  χ  l   is the irreducible character of B m (2 n  1  1)  corresponding to  l  P  B ̂  m  and
 E  ̂  k  ̂  g m  is as in  (2 . 4) .

 A determinantal formula .  Given a Frobenius formula of the form given in Theorem
 (5 . 12) ,  there is a ‘standard way’ of deriving a determinantal-type formula for the
 irreducible character .  Although this procedure is well known to the experts ,  it is
 periodically rediscovered .  The general method is probably originally due independently
 to D . -N .  Verma and A .  Zelevinsky .  A survey appears in [8] .  We derive ,  explicitly ,  the
 determinantal formula for the special case of the Brauer algebra in the following
 theorem .  To our knowledge ,  this formula has not been explicitly worked out for the
 Brauer algebra ,  except for the case in which the characters are evaluated at the
 identity ,  which appears in [6] .  The result in [6] is interesting as it describes a generating
 function for the dimensions of the weight space representations in terms of Bessel
 functions .  A similar Bessel function description can also be given for the general
 character of the weight space ,  but it is not particularly nice in the general case ;  we shall
 not present it here .

 For each  l  P  B ̂  m  ,  let  χ  l   denote the irreducible character of  B m (2 n  1  1) correspond-
 ing to  l .  For each  a  5  ( a 1  ,  a 2  ,  .  .  .  ,  a n )  P  Z n ,  let  l ( a ) be the partition determined by
 rearranging the sequence ( u a 1 u ,  u a 2 u ,  .  .  .  ,  u a n u ) into decreasing order .  Let  b  a 1

 ?  b a 2
 ?  ?  ?  b a n

 denote the character  b l ( a )  of the weight space ( V  ̂  m ) l ( a )  .

 (5 . 13)  T HEOREM .  Let the notation be as in the pre y  ious paragraph . Then

 χ  l  5  det( b l i 2 i 1 j  2  b l i 1 2 n 2 i 2 j 1 1 ) 1 < i ,  j < n .

 P ROOF .  Comparing the ‘Frobenius formula’ with the equality in Proposition (5 . 8) ,
 we have

 O
 l P B ̂  m

 b l  mb l  5  O
 l P B ̂  m

 O
 a P H n l

 b a x a  5  O
 …  P B ̂  m

 χ  … sb …  .

 Multiplying both sides of the relation above by  b r   and using (5 . 5) gives

 O
 …  P B ̂  m

 χ  …  O
 w P H n

 »  ( w ) x w ( …  1 r  )  5  O
 l P B ̂  m

 O
 a P H n l

 O
 y  P H n

 b a »  ( y  ) x a 1 … r .

 For simplicity ,  substitute  g  5  a  1  y r  2  r  ,  to obtain

 O
 …  P B ̂  m

 χ  …  O
 u P H n

 »  ( w ) x w ( …  1 r  )  5  O
 l P B ̂  m

 O
 a P H n l

 S  O
 y  P H n

 »  ( y  ) b g 1 r  2 y r D x  g 1 r .

 Both sides of this equation are alternating polynomials and can be written as linear
 combinations of the elements  b l 1 r  ,  where  l  P  B ̂  m .  Note that if  l   is a partition ,  then
 l  1  r  5  ( l 1  1  n  2  1 – 2  ,  .  .  .  ,  l n  1  1 – 2 )   is always such that  l 1  1  n  2  1 – 2  .  .  .  .  .  l n  1  1 – 2  .  0 .
 Thus ,  one can compare coef ficients of  x g 1 r  ,  where  g  1  r   is a strictly decreasing
 sequence ,  i . e .   g  1  1  n  2  1 – 2  .  ?  ?  ?  .  g n  1  1 – 2  .  0 .  If  l   is a partition ,  then  w ( l  1  r  ) is a
 strictly decreasing sequence if f  w  is the identity .  Comparing coef ficients gives that
 l  5  g .  It follows that

 χ  l  5  O
 y  P H n

 »  ( y  ) b l 1 r 2 y r .

 It remains to express the right-hand side in a determinantal form .  Let  m  5
 l  1  r  2  y r  5  ( m  1  ,  .  .  .  ,  m n ) .  If  y  P  H n   such that  y  (  j )  5  Ú i ,  then the  i th entry of  y  r   is
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 Ú ( n  2  j  1  1 – 2 ) .  Thus the  i th entry ,   m i  ,  of  m  5  l  1  r  2  y r   is  l i  1  n  2  i  1  1 – 2  Ò  ( n  2  j  1  1 – 2 ) ,  so
 that

 (5 . 14)  m i H l i  2  i  1  j ,
 l i  1  2 n  2  i  2  j  1  1 ,

 if  y  (  j )  5  i ,
 if  y  (  j )  5  2 i .

 The elements of  H n   can be viewed as signed permutations  y  5  ( y  (1) ,  y  (2) ,  .  .  .  ,  y  ( n )) .
 Each element  y  P  H n   is of the form  y  5  » π  ,  where  »  5  ( Ú 1 ,  Ú 2 ,  .  .  .  ,  Ú n )  P  H n   and
 π  5  ( u y  (1) u ,  .  .  .  ,  u y  ( n ) u )  P  S n .  Thus ,

 χ  l  5  O
 y  P H n

 »  ( y  ) b l 1 r 2 y r  5  O
 »  5 ( Ú 1 ,  Ú 2 ,  .  .  .  ,  Ú n )

 ( 2 1) »  ( »  )  O
 π  P S n

 »  ( π  ) b m  1  ?  ?  ?  b m n
 ,

 where in the last expression  m  5  l  1  r  2  e π r  ,  so that  m i   is given by (5 . 14) and  »  ( e  ) is
 the number of negative entries of the sequence  e .  It is now easy to rewrite this
 expression in the determinantal form given in the statement of the theorem .  h

 R EMARK .  By evaluating both sides of the equation in (5 . 13) at the identity element
 of the Brauer algebra ,  one obtains a ‘determinantal’ formula for the dimension of the
 irreducible representation of the Brauer algebra indexed by  l .  This is analogous to the
 determinantal formula for the dimension of the irreducible representations of the
 symmetric group (see [10  § 3 . 2]) .  It would be interesting to derive the ‘hook formula’
 [12 ,  Lemma 8 . 7]

 d l  5 S  k
 u l u D ( k  2  u l u  2  1)!!

 u l u !

 P ( i ,j ) P l  h i , j

 for the dimensions of the irreducible representations of the Brauer algebra from the
 determinantal formula .  This would be analogous to the derivation of the hook formula
 for the symmetric group case originally given by Frame ,  Robinson and Thrall (see [10 ,
 § 3 . 2]) .
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 A PPENDIX :  T HE  S ECOND  R ELATION   FOR  C HARACTERS   OF   A  S PLIT  S EMISIMPLE  A LGEBRA

 Let  A  be a finite-dimensional algebra over a field  F .  Let  t $  :  A  5  F  be a non-
 degenerate trace on  A ,  i . e .  a linear functional such that  t $  ( a 1 a 2 )  5  t $  ( a 2 a 1 ) for all
 a 1  ,  a 2  P  A  and such that if  a  P  A , a  ?  0 ,  then there exists  b  P  A  such that  t $  ( ba )  ?  0 .
 Define a bilinear form on  A  by defining

 k a 1  ,  a 2 l  5  t $  ( a 1  ,  a 2 )

 for all  a 1  ,  a 2  P  A .  Let  G  5  h g i j   be a basis of  A  and let  G *  5  h g i * j   be the dual basis to the
 basis  G  with respect to the form  k  ,  l ,  i . e .  the basis defined by  k g i  ,  g j * l  5  d i j  .

 Given an element  a  P  A ,  define

 (A . 1)  [ a ]  5  O
 g i P G

 g i ag i * .

 One can show that the element [ a ] is independent of the choice of the basis  G .
 The algebra  A  acts on itself by left multiplication and by right multiplication .  The

 bitrace of these two actions can be given by

 (A . 2)  btr( a 1  ,  a 2 )  5  O
 g i P G

 a 1 g i a 2 3 g i
 ,

 where  a 1 g i a 2 3 g i
   denotes the coef ficient of  g i   in the product  a 1 g i a 2 ,  expanded in terms of

 the basis  G .

 (A . 3)  T HEOREM .  For any two elements a 1  ,  a 2  P  A ,

 btr ( a 1  ,  a 2 )  5  k a 1  ,  [ a 2 ] l  5  k [ a 1 ] ,  a 2 l .

 P ROOF .

 btr( a 1  ,  a 2 )  5  O
 g i P G

 a 1 g i a 2 3 g i
 5  O

 g i P G
 k a 1 g i a 2  ,  g i * l

 5  O
 g i P G

 t $  ( a 1 g i a 2 g i *)  5  t $  ( a 1 [ a 2 ])  5  k a 1  ,  [ a 2 ] l .
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 The second equality follows by noting that

 k a 1  ,  [ a 2 ] l  5  O
 g i P G

 t $  ( a 1 g i a 2 g i *)  5  O
 g i P G

 t $  ( g i * a 1 g i a 2 )  5  k [ a 1 ] ,  a 2 l .  h

 (A . 4)  T HEOREM .  If A is a split semisimple algebra o y  er F and A ̂   is an index set for the
 irreducible representations of A , then

 O
 l P A ̂

 χ  l ( a 1 ) χ  l ( a 2 )  5  k a 1  ,  [ a 2 ] l ,

 where  χ  l   denotes the irreducible character of A corresponding to the irreducible
 representation labelled by  l .

 P ROOF .  A  acts on itself by both left and right multiplication .  These two actions
 commute and each generates the full centralizer of the other in End( A ) .  This fact ,
 combined with the double centralizer theory ,  implies that

 (A . 5)  A  .  O
 l P A ̂

 A l  ̂  A l  ,

 as  A  ̂  A o p   bimodules .  Here  A l   denotes the irreducible  A -module indexed by  l  P  A ̂
 and  A l   the corresponding  A o p -module .  Taking traces on each side of (A . 5) gives that

 btr( a 1  ,  a 2 )  5  O
 l P A ̂

 χ l ( a 1 ) χ  l ( a 2 ) ,

 where  χ  l   denotes the character of  A  corresponding to  A l   and  l l   denotes the character
 of  A  corresponding to  A l .  It is clear that  χ  l ( a )  5  χ l ( a ) for all  a  P  A .  The theorem now
 follows from Theorem (6 . 3) .  h

 The group algebra of a finite group .  Let  G  be a finite group and let  A  5  FG  be its
 group algebra over  F .  Let  t $  :  FG  5  F  given by

 t $  ( a )  5  a 3 1  ,

 where  a 3 1  denotes the coef ficient of the identity in the element  a . t $   is a non-degenerate
 trace on  FG  and the dual basis to the basis of group elements is the set of  g 2 1 ,  g  P  G .  If
 g  P  G ,  then the element [ g ] defined by (A . 1) is given by

 [ g ]  5  ( g ?)  O
 k P # g

 k ,  where  g ?  5  u G u / u # g u  ,

 and  # g   is the conjugacy class of the element  g .  In this special case ,  Theorem (A . 4) gives
 the classical result that if  FG  is split semisimple then

 (A . 6)  O
 l P G

 χ  l ( g ) χ  l ( h )  5 K g ,  ( h ?)  O
 k P # h

 k L  5 H h ?
 0 ,

 if  g  P  # h 2 1 ,
 otherwise ,

 where  G ̂    is an index set for the irreducible representations of  G  and  χ  l   denotes the
 irreducible character of  G  associated to  l  P  G ̂  .

 The symmetric group .  In the case of the symmetric group  S m   the conjugacy classes are
 indexed by partitions  m  £  m .  If  m  5  (1 m 1 2 m 2  ?  ?  ?  ) is a partition of  m ,  then  m  ?  5
 1 m 1 m 1 !2

 m 2 m 2 !  ?  ?  ?  ,  and it follows from (A . 6) that

 O
 l £ m

 χ  l ( m  ) χ  l ( …  )  5  d m …  m  ? ,

 where  χ  l ( m  ) denotes the irreducible character of  S m   indexed by  l   evaluated at the
 conjugacy class indexed by  m .


