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Abstract

In my work on the Brauer algebra, which is not a group algebra but is a semisimple algebra with a
distinguished basis, I have used the group algebra of the symmetric group as a guide, and tried to find
generalizations to the Brauer algebra of as many of the properties of the symmetric group as possible. One
of the outcomes of this work was the discovery that much of the representation theory of general semisimple
algebras can be obtained in a fashion exactly analogous to the method used for finite groups. In this chapter
I develop this theory from scratch. Along the way I prove, in the setting of semisimple algebras over €,
an analogue of Maschke’s theorem, a Fourier inversion formula, analogues of the orthogonality relations
for characters and a formula giving the character of an induced representation, induced from a semisimple
subalgebra. Section 4 reviews the double centralizer theory of I. Schur and defines a “Frobenius map” in the
most general setting, a representation of a semisimple algebra. Such a map has proved useful in the study
of the characters of the symmetric group, the Brauer algebra, and the Hecke algebra.



1. Representations

An algebra is a vector space A over C with a multiplication such that A is a ring with identity and such
that for all a1,a2 € A and ¢ €C, .
(car)az = a1(caz) = c(araz). (1.1)

More precisely, an algebra is a vector space over € with a multiplication that is associative, distributive, has
an identity, and satisfies (1.1). Suppose that a1,a3,...,a, is a basis of A and that c,l‘j are constants in C
such that

n .
gia; = Zcfjak. (1.2)
k=1

It follows from (1.1) and the distributive property that the equations (1.2) for 1 < 7,j < n completely
determine the multiplication in A. The c{-‘j are called structure constants. The center of an algebra A is the
subalgebra

Z(A) = {b € Alab = ba for all a € A}.

A nonzero element p € A such that pp = p is called an idempotent. Two idempotents p;,ps € A are
orthogonal if p;p2 = p2py = 0. A minimal idempotent is an idempotent p € A that cannot be written as a
sum p = p; + pz of orthogonal idempotents p;,ps € A.

For each positive integer d we denote the algebra of d x d matrices with entries from € and ordinary
matrix multiplication by My(C). We denote the d x d identity matrix in My(C) by I. For a general algebra
A, M4(A) denotes d x d matrices with entries in A. We denote the algebra of matrices of the form

a 0 . 0 ‘
AR L
0 0 a

by I,(A). Note that I,(A) = A, as algebras. The trace, tr(a), of a matrix a = ||a;;|| is the sum of the
diagonal entries of a, tr(a) = 3_; a;;. _
An algebra homomorphism of an algebra A into an algebra B is a C-linear map f: A — B such that for
all ay,a2 € A,
fy=1,

flayaz) = f(a1)f(a2).

A representation of an algebra A is an algebra homomorphism

(1.3)

V: A — My(C).

The dimension of the representation V is d. The image V' (A) of the representation V is a finite dimensional
algebra of d x d matrices which we call the algebra of the representation V. 1t is a subalgebra of My4(C). A
faithful representation is a representation which is injective. In this case the algebra V(A) is called a faithful
realization of A and A = V(A). The character of the representation V of A is the function xv: A —C given
by

xv(a) = tr(V(a)). (1.4)

An anti-representation of an algebra A4 is a C-linear map V': A — M4(C) such that for all a;,az € A,

V(1) = Iy,
V'(ajaz) = V'(az)V'(a1).

As before the dimension of the anti-representation is d and the image, V/(A), of the anti-representation is
an algebra of matrices called the algebra of the anti-representation.

The group algebra CG of a group G is the algebra of formal finite linear combinations of elements of
G where the multiplication is given by the linear extension of the multiplication in G. The elements of G
constitute a basis of CG. A representation of the group G is a representation of its group algebra.
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Let A be an algebra. An A-module is a vector space V with an A action 4 x V — V such that for all
a,01,82 € A, v,v,v2 €V, and ¢,¢; €C, '
v = v,
ai(azv) = (a1a2)v,
(a1 + a2)v = a1v + aqv,
a(c1vy + c2v2) = cy(avy) + ca(avy).

(1.5)

An A-module homomorphism is a C-linear map f:V — V' between A-modules V and V’ such that for all
ac Aandv eV,

£(av) = af(v). (16)
An A-module isomorphism is a bijective A-module homomorphism.

By condition 3 of (1.5) the action of a € A on V is a linear transformation V(a) of V. If we specify a
basis B of V' then the linear transformation V(a) can be written as a d x d matrix, where dimV = d. In
this way we associate to every element of 4 a d X d matrix. This gives a representation of A which we shall
also denote by V.

Conversely, if T is a d dimensional representation of A and V is a d dimensional vector space with

basis B then we can define the action of an element a in A by the action of the linear transformation on V'
determined by the matrix T'(a) so that for all v € V/, .

av = T(a)v.

In this way V becomes an A-module. Thus the notion of A-module is equivalent to the notion of representa-
tion. When we view the A-module we are focusing on the vector space and when we view the representation
we are focusing on the linear transformations (matrices).

Let V' be an A-module with basis B and let B’ be another basis of V' and denote the change of basis
matrix by P. Let a € 4 and let V(a), V/(a) be the matrices, with respect to the bases B and B’ respectively,
of the linear transformation on V induced by a. Then by elementary linear algebra we have that

V'(a) = PV(a)P™1. | 1.7

This leads us to the following definition. Two d dimensional representations V' and V’ of an algebra A are
equivelent if there exists an invertible d x d matrix P such that (1.7) holds for all a € A. Isomorphic modules
define equivalent representations.
The direct sum V) & V; of two A-modules V) and V; is the A-module of all pairs (v, v,), v1 € V; and
vy € V3, with the A action given by
a(vy,v2) = (avy,avy),

for all a € A. The direct sum V) & V; of two representations V; and V5 of A is the representation V of A
given by

V(a) = (Vlé“) v;ga))' | (18)

Direct sums of n > 2 representations or A-modules are defined analogously. We denote V@V @ ---®dV, n
factors, by V®". Note that the algebra of the representation Vo7, V®7(4), is I,(V(4)).
An A-invariant subspace of an A-module V is a subspace V' of V such that

{av'|la€ A, eV} = AV C V',

An A-invariant subspace of V is just a submodule of V. Note that the intersection V' N V" of any two
invariant subspaces V', V" of V is also an invariant subspace of V.

An A-module with no submodules is a simple module. An irreducible representation is a representation
that is not equivalent to a representation of the form

V(a) = (V’éa) :) : (1.9)



where V' is also representation of A. If V/, V" are invariant subspaces of a representation V and V' is
irreducible then V' NV” is either equal to 0 or V'. A completely decomposable representation is a represen-
tation that is equivalent to a direct sum of irreducible representations. An algebra A is called completely
decomposable if every representation of A is completely decomposable.
The centralizer of an algebra A of d x d matrices is the algebra 4 of d x d matrices @ such that for all
matrices a € A,
@a = ad. (1.10)

The centralizer of a representation V of an algebra A is the algebra V(4).
Ezamples.

1. Let A be an algebra of d X d matrices. Since all matrices in A4 commute with all elements of 4,

ACA
Also,
T:(—A_) = M,(A) and
m =1, (‘B
Hence,

I, (A) =1, (A)
2. Schur’s lemma. Let W, and W5 be irreducible representations of A of dimensions dy and dy respectively. If B
is a dy x d2 matrix such that
Wi(a)B = BW,(a), foralla€ A,
then either
1YW, 2 Wsand B=0, or
2) Wy = W, and if Wy = W, then B = cly, for some ¢ €C.
Proof. B determines a linear transformation B: Wi — Wa. Since Ba = aB for all a € A we have that
B(aw;) = Baw, = aBw, = aB(w),
for all ¢ € A and wy € Wy. Thus B is an A-module homomorphism. ker B and im B are submodules of Wy and W
respectively and are therefore either 0 or equal to Wi or Wy respectively. If ker B = Wy orimB =0then B =0. In
the remaining case B is a bijection, and thus an isomorphism between W; and W5. In this case we have that dy = d3.
Thus the matrix B is square and invertible.
Now suppose that Wy = W, and let ¢ be an eigenvalue of B. Then the matrix ely, — B is such that Wi (a)(ela, —
B) = (cI4, ~ B)Wi(a) for all @ € A. The argument in the preceding paragraph shows that ¢l4, — B is is either
invertible or 0. But if ¢ is an eigenvalue of B then det(clg, ~ B) = 0. Thuselyg, - B=0.0

3. Suppose that V is a completely decomposable representation of an algebra A and that V' 2 @AW,?'M where the
W are nonisomorphic irreducible representations of A. Schur’s lemma shows that the A-homomorphisms from W), to
V form a vector space

Homg(Wy, V) =C®™ .
The maultiplicity of the irreducible representation Wy in V' is

m, = dim HOmA(W)\, V)
4. Suppose that V' is a completely decomposable representation of an algebra A and that V = @, WGB * where the
W), are nonisomorphic irreducible representations of A and let dim Wy = dx. Then :

V(A) = @, WE™ (A) = @rIn, (War(4)) = @AW (4).

If we view elements of ®x Im, Wi(A) as block diagonal matrices with m blocks of size d) X dy for each A, then by
using Ex. 1, and Schur’s lemma we get that

V(A) = & [mx(LVX(A)) SrMm, (Wir(4))
= @A Mm, (14,(C))-
5. Let V be an A-module and let p be an idempotent of A. Then pV is a subspace of V' and the actionof pon V is a

projection from V to pV. If p1, pa € A are orthogonal idempotents of A then p1V and p2V are mutually orthogonal
bspaces of V', since if p1v = pyv’ for some v and v’ in V then pyv = pip1v = p1pat’ = 0. So V = p1 V @ po V.,
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6. Let p be an idempotent in A and suppose that for every a € A, pap = kp for some constant k¥ €C. If p is not
minimal then p = p1 + p2, where p;,p, € A are idempotents such that pyp» = pap; = 0. Then p; = pp1p = kp
for some constant k¥ €C. This implies that py = p1p1 = kppr = kp1, giving that either k = lorp; = 0. Sop is
minimal. ’

7. Let A be a finite dimensional algebra and suppose that z € A is an idempotent of 4. If z is not minimal then
z = p; + p2 where p; and p, are orthogonal idempotents of A. If any idempotent in this sum is not minimal we
can decompose it into a sum of orthogonal idempotents. We continue this process until we have decomposed z as a
sum of minimal orthogonal idempotents. At any particular stage in this process z is expressed as a sum of orthogbnal
idempotents, z = ) ; pi. So zA = Y ; piA. None of the spaces p; A is 0 since p; = p; - | € piA and the spaces p; A
are all mutually orthogonal. Thus, since zA is finite dimensional it will only take a finite number of steps to decompose
z into minimal idempotents. A partition of unily is a decomposition of 1 into minimal orthogonal idempotents.



2. Finite dimensional algebras

The trace, tr(a), of a d x d matrix a = [|a;j|| is the sum of its diagonal elements, tr(a) = ¥, a;i. A trace
fon an algebra A is a C-linear map i: A —C such that for all a,4 € 4,

i(ab) = {(ba). (2.

Every representation V of A determines a trace fy on A given by fy (a) = tr(V(a)) where a € A. A trace {
is nondegenerate if for each a € A, a # 0, there exists b € A such that t(ba) # 0. A trace t on A determines
a symmetric bilinear form <,> on A given by

< a,b>=i{ab). (2.2)

Suppose A is finite dimensional and let B = {b;, b3,...,b,} be a basisof A. A basis B™ = {b},b3,...,b}}
of A is dual to B with respect to the form <, > if

< b7, bj >= 6,']'.
The Gram matriz of A is the matrix
G= “ < b, b; > ” (2.3)

Suppose that B* exists and that C' = ||¢;;|| is an s x s matrix such that
b = cirbr. (2.4)
k

Then
< b;,bj >= Zc“‘ < bk,b,‘ >= 6,‘,‘.
k
In matrix notation this says that CG = I,. So C must be G~!. Conversely, if C = G~ then defining b} by

(2.4) determines a dual basis B*, This shows that B* exists if and only if G is invertible and that if it exists
1t is unique.

(2.5) Proposition. If{is a trace on a finite dimensional algebra A with basis B = {by,bs,...,b,} and <, >
is given by (2.2) then the Gram matrix G is invertible if and only if ¢ is nondegenerate.

Proof. The trace i is degenerate if and only if there exists a b € A such that i{ab) = 0 for all a € A. This
is the same as saying that #(4;b) = 0 for each basis element bj. If b = }". ¢;b;, ¢; €C, we have that the ¢;

satisfy the system of equations !
f(b:b) = Y _ f{bibj)e; = 0.

This system has a nontrivial solution if and only if the matrix G = ||t{5;b;)|| is singular. O

Symmetrization

Let A be a finite dimensional algebra with a nondegenerate trace £ and let B be a basis of A. Let B*
be the dual basis to B with respect to the form <, > given by (2.2). For g € B let g* denote the element of
B* such that t(gg*) = 1. Let V| and V; be representations of A of dimensions d; and d respectively.

(2.6) Proposition. Let C be any d; x d; matrix with entries in C. If

[C] =Y Vi(g)CVa(g™),

g€B

then, for any a € A,

Vi(a)[C] = [C]V2(a).



Proof. Let a € A. Then
Vi(a)[C] = _ Vi(ag)CVa(g®)
g

=Y () <ag,h* > h)Cu(g*)

g€B heB

= > <ag,k” > Vi(h)CVy(g")
g.heB

= D Vi(h)Cilagh®)Va(s")
9,heB

=Y WVi(R)C Y _ fihag)Va(g”)

heB geB

=Y Vi(h)CVa(D_ < h’a,g>g*)

heB geB

=Y Vi(h)CVy(h"a)
heB

=[CVa(e). O

If Vi and V; are irreducible then Schur’s lemma gives that [C] = 0 if V; and V; are inequivalent and that if
Vi = Va then [C] = cl4, for some c €C.

Let A be a finite dimensional algebra. The action of A on itself by multiplication on the left turns A
into an A-module. The resulting representation is the regular representation of A and we denote it by A

The set A is the same as the set A, but we distiniguish elements of A by writing @ € A. As usual we

denote the algebra of this representation by —X(A) We denote the trace of this representation by tr. Notice
that the trace ¢r of the regular representation can be given by

tr(a) =) ag |y, @.7)

geB

where a € A and B is any basis of A. Here a |; denotes the coefficient of ¢ in the expansion of a € 4 in
terms of the basis B.

(2.8) Theorem. If A is a finite dimensional algebra such that the regular representation A has nondegen-
erate trace then every representation V of A is completely decomposable.

Proof. Let tr denote the trace of the regular representation. Let B be a basis of A and for each g € B let
g* denote the element of the dual basis to B with respect to the trace ¢r such that tr(gg*) = 1.

Let V be a representation of A of dimension d and let V; be an irreducible invariant subspace of V. Let
P:V — V be an arbitrary projection of V onto V). Define

P =% V(g)PV(s").

g€B

Then, by (2.6), we know that
V(a)P, = PiV(a).

Since V; is an A—invaria.nt subspace, P,V C V;. Since V) is irreducible P,V is either 0 or V.
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Let e = EgEB g9*. If a € A then

tr(ae) = tr(z agg”)
g€B

=Z<ag,g">

g€B
= Z ag |
geB
=1tr(a).

This shows that tr(a(e — 1)) = 0 for all a € A. Since tr is nondegenerate we have that

e= Z gg" =1. (2.9)

geB

Now let v € V;. Then since V(g*)v € V; we have

P =Y V(g)P(V(s")v)

g€B

= S Vi)V

g€B

=V(D g™y
g€B
=V()v

=v.

So P]_V = V1 and PIP]_V = PIV

Let P{ = I3— P, and let V3 = P{V. Notice that V(a)P] = P{V(a) for all a € A. So V; is an A-invariant
subspace of V. Since, for every v € V, v = Piv + (14 — P))v = Piv+ P{v, we have V = PV 4+ P{V.
Ifve AVNPV then v= Pv=PPv=~P(a—P)v=0 SoPAVnNPV =0. Thus we see that
V=RVePV.

If P]V is irteducible then we are done. If not apply the same process again with P/V in place of V. Since
V is finite dimensional continuing this process will eventually produce a decomposition of V into irreducible
representations. [

Now let A be a finite dimensional algebra such that the trace ir of the regular representation Aof A
is nondegenerate. Let B be a basis of A and for each g € B let g* denote the element of the dual basis to
B with respect to the trace tr such that tr(gg*) = 1. Let V be a faithful representation of A. By (2.8) we
know that V' can be completely decomposed into irreducible representations. Choose a maximal set {W,}
of nonisomorphic irreducible representations appearing in the decomposition of V. Let d) = dim W) and
define Mf{C) = ©\M;,(C). We view MH{C) as an algebra of block diagonal matrices with one dy x dy
block for each A. V(A) = @,W,(4) is a subalgebra of M{C) in a natural way. Let Ef} denote the d x d
matrix with 1 in the (i, ) entry of the Ath block and 0 everywhere else and let I, be the matrix which is
the identity on the Ath block and 0 everywhere else.

For each g € B let I/V,-?(g") denote the (7, 7) entry of the matrix Wi (¢*). Then

kth row of (1V7i(g7)Wi(g)) = jth row of (Wa(g")ELWa(g)).
So

kth row of (3 W(g")Wa(9)) = jth row of (O Walg")E4Wa(9))
9€B g (2.10)

= jth row of (cIndix).
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So the ith row of 3=, W};(g*)W(g) is all zeros except for ¢ in the jth spot and all other rows of
deB W'J-’\,»(g")WA(g) are zero. So

Y Wi(gIWa(g) = cEj (2.11)
g

for some ¢ €C. We can determine ¢ by setting i = k& to get
Cd,\ = iT’(CIAé,',')
=tr()_ Wi(g")EZWa(9))
g B

=tr(y_ Walg) Walg")Ei)

g

= tr(Wr(Q_ 99") ER)-

g

Since the trace of the regular representation was used to construct the g* we have, (2.9), that 3~ 099" =1,
giving
tr(Wa(Q)_ 99" ER) = tr(WA(1)ER)
P . :
= tr(I,\E,-A,-)
=1

So ¢dy =1 and we can write (2.11) as

d\ Y Wi(g")Wa(g) = E}}.
g

Since we have expressed each E,’} as a linear combination of basis elements of V(A) we have that E,’.‘, e V(4)
for every i and j. But the E}} form a basis of M{C). So MzC) C V(A). Then A= V(A) = MfC). We
have proved the following theorem.

(2.12) Theorem. (Artin-Wedderburn) If A is a finite dimensional algebra such that the trace of the regular
representation of A is nondegenerate, then, for some set of positive integers d,

A= @AMd; (C)
Ezamples

1. Let A = {a;} and B = {b;} be two bases of A and let A* = {a}} and B* = {b]} be the associated dual bases
with respect to a nondegenerate trace £ on A. Then

b,' = Z $4jaj, and
j
bi = Zt,-ja;,
j
for some constants s;; and ¢;;. Then
6ij =< b;,b] > =< Zsuahziﬂa; >
k i
= Zs,‘ktﬂ < ak,a? >
k1
= Z Sikti10k
k.l
= Z Siktik-
k
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In matrix notation this says that the matrices S = ||si;|| and T = ||t;;]| are such that
ST' = 1.
Then, in the setting of Proposition (2.6),

Yo VABICVR(b]) = D (D i Vila))C(YtiaValai))
i 1 j k
=Y (D sisti)Vi(a;)CVa(at)

ki
= 8 Vi(a;)CVa(a})
ik

= Z Vl(aj)CVz(a;-‘).
b

. This shows that the matrix [C] of Proposition (2.6) is independent of the choice of basis.

2. Let A be the algebra of elements of the form ¢; + cz¢€, ¢1, ¢ €C, where €2 = (. A is commutative and ¢ defined by
t-.(cl +¢3e) = ¢;+c2 is a nondegenerate trace on A. The regular representation x—‘f of A is not completely decomposable.

—
The subspace C € C A is invariant and its complementary subspace € is not. The trace of the regular representation

is given e:_(.plicit)y by tr(1) = 2 and tr(e) = 0. tr is degenerate. There is no matrix representation of A that has trace
given by t.

3. Suppose that G is a finite group and that A =CG is its group algebra. Then the group elements ¢ € G form a basis
of A. So, using (2.7), the trace of the regular representation can be expressed in the form

tr(a) = Z ag |,

geG

=2 ak
9€G

= |Gla ll:

where 1 denotes the identity in G and a |, denotes the coefficient of g in a. Since tr(g~ 1g) = |G| # 0 for each ¢ € G,
tr is nondegenerate. If we set £(a) = a |, then f is a trace on A and {9~ '},eq is the dual basis to the basis {g},eq
with respect to this trace.

4. Let  be the trace of a faithful realization ¢ of an algebra A (i.e. for each a € A4, t-.(a) is given by the standard trace
of ¢(a) where @ is an injective homomorphism ¢: A — M4(C)). Let VA = {a € Alt{ab) =0 for all b € A}. VA is
an ideal of A. A

Let a € VA. Then tr(a*~1a) = tr(a*) = 0 for all k. If Aj,..., A4 are the eigenvalues of #(a) then i{a*) =
A+ 25 4.4 2k = pe()) = 0 for all k > 0, where pj represents the kth power symmetric function [Mac]. Since the
power symmetric functions generate the ring of symmetric functions this means that the elementary symmetric functions
ex(A) = 0 for k > 0, [Mac] p.17, (2.14). Since the characteristic polynomial of ¢(a) can be written in the form

char¢(a)(t) =t _¢, (/\)t"'1 + 62(/\)td_2 — -k eg(N),

we get that chary)(t) = t4. But then the Cayley-Hamilton theorem implies that ¢(a)? = 0. Since ¢ is injective we
have that a® = 0. So a is nilpotent.

Let J be an ideal of nilpotent elements and suppose that @ € J. For every element b € A, ba € J and ba is
nilpotent. This implies that ¢(ba) is m]potent By noting that a matrix is nilpotent only if in Jordan block form the
diagonal contains all zeros we see that t(ba) = 0. Thus a € VA.

So VA can be defined as the largest ideal of nilpotent elements. Furthermore, since the regular representation of
Ais always faithful VA is equal to the set {a € A|tr(ab) = 0 for all b € A} where tr is the trace of the regular
representation of A.



5. Let .A be a basis and £ the trace of a faithful realization of an algebra A as in Ex. 3, and let G(A) be the Gram
matrix with respect to the basis .4 and the trace t as given by (2.2) and (2.3). If B is another basis of A then

G(B) = P'G(A)P,

where P is the change of basis matrix from A to B. So the rank of the Gram matrix is iﬁdependent of the choice of the

basis A.
Choose a basis {a1,az,...,ar} of VA (VA defined in Ex. 3) and extend this basis to a basis

{a1,az,...,ak,b1,...,b,} of A. The Gram matrix with respect to this basis is of the form
0 0
0 G(B)
where G(B) denotes the Gram matrix on {b1,b2,...,b,}. So the rank of the Gram matrix is certainly less than or
equal to s.
Suppose that the rows of G(B) are linearly dependent. Then for some constants ¢;, ¢z, . - ., €s, not all zero

c1t(bibs) + cat{babi) + - -+ + ¢s2(bsbi) = 0,

foral1<i<s. So .
H(Q cibj)bi) =0, forall i.
j

This implies that 3 ¢;b; € V/A. This is a contradiction to the construction of the bj. So the rows of G(B) are linearly
independent. '

Thus the rank of the Gram matrix is s or equivalently the corank of the Gram matrix of A is equal to the dimension
of the radical VA. Thus, the trace {7 of the regular representation of A is nondegenerate if and only if VA = (0).

6. Let W be an irreducible representation of an arbitrary algebra A and let d = dim W. Denote W(A) by Aw. Note
that representation W is also an irreducible representation of Ay (W(a) = a for all a € Aw).

We show that {r is nondegenerate on Aw, i.e. that if @ € Ay, a # 0, then there exists b € Ay such that
tr(ba) # 0. Since a is a nonzero matrix there exists some w € W such that aw # 0. Now Aaw C W is an A-invariant
subspace of W and not 0 since aw 7# 0. Thus Aaw = W. So there exists some b € Aw such that baw = w. This
shows that ba is not nilpotent. So tr{ba) # 0. So ¢r is nondegenerate on Ay . This means that Aw = @My, (C)
for some dx. But since by Schur’s lemma Aw = I4(C), where d = dim W, we see that W(A) = Aw = My4(C).

7. Let A be a finite dimensional algebra and let A denote the regular representation of A. The set 2 is the same as
the set A, but we distiguish elements of A by writing @ € A.
— —
A linear transformation B of A is in the centralizer (as defined by (1.10)) of A if for every element a € A and

T eA,
Ba# =aB7T.
— —_
Let B1 = b . Then R
Ba@ =DBal
= aBT
—
=a
-
= ab.

— . .
So B acts on @ € A by right multiplication by b. Conversely, it is easy to see that the action of right multiplication
commutes with the action of left multiplication since

(a@)b = a(Zb),

—
for all @,b € A, and T € A. So the centralizer algebra of the regular representation is the algebra of matrices
determined by the action of right multiplication of elements of A. :

6



Notes and References

The approach to the theory of semxs1mple algebras that is presented in this section and the following
section follows closely a classical approach to the representation theory of finite groups, see for example [Se]
or [Ha). Once one has the analogue of the symmetrization process for finite groups, the only nontrivial step
in the theory that is not exactly analogous to the theory for finite groups is formula (2.9).

I discovered this method after reading the sections of [CR1] concerning Frobenius and symmetric alge-
bras. Frobenius and symmetric algebras were introduced by R. Brauer and C. Nesbitt, [BN] and [Ns]. T.
Nakayama [Nk] has a version of Theorem (2.6) and R. Brauer [Br] proves analogues of the Schur orthogonal-
ity relations that are analogous to formula (2.10). Ikeda [Ik], and Higman [Hg|, following work of Gaschiitz
[Ga], construct “Casimir” type elements similar to those in (2.9) and §3 Ex. 7. In [CR2| §9 Curtis and
Reiner use a similar approach but with different proofs, communicated to them by R. Kilmoyer, to obtain
theorems (3.8) and (3.9) for split semisimple algebras (over fields of characteristic 0). N. Wallach has told
me that essentially the same approach works for finite dimensional Lie algebras.

This approach is useful for studying semisimple algebras that have distiguished bases. The recent interest
in quantum deformations is producing a host of examples of semisimple algebras that are not group algebras
but that do have distinguished bases. Some examples are Hecke algebras associated to root systems, the
Brauer algebra, and the Birman-Wenzl algebra [BW)]. For an approach to the Hecke algebras that is essentially
an application of the general theory given here see [GU] and [Cr3] §68C.

I would like to thank Prof. A. Garsia for suggesting that I try to find an analogue of the symmetrization
process for finite groups for the Brauer algebra. It was this problem that resulted in my discovery of this
approach. I would like to thank Prof. C.W. Curtis for his helpful suggestions in locating literature with a
similar approach. I would also like to thank Prof. Garsia for showing me the proofs of Exs. 4 and 5.



3. Semisimple algebras

An algebra A is simple if A= M;(C).
Suppose t is a trace on Mg(C). Then

Ifa= ||a,-j|| € Md(C) then

So, up to a constant factor there is a unique trace function on My(C), that given by the standard trace on
matrices. _

Suppose J is an ideal of My(C) and that a = ||a;;|| € J, with a # 0. So a;; # 0 for some (7,j). Since
a € J and J is an ideal, ‘

d
(1/ai;) ZEk.-ank = (1/as5) ZaijElck =14
k=1 k

is an element of J. Thus J = My(C). This shows that the only ideals of M4(C) are the trivial ones, 0 and
M;(C). It is an immediate consequence of §1 Ex. 1 that the center of M4(C) is I4(C) =C I4. Furthermore,
I, is the unique central idempotent in My4(C).

(3.1) Proposition. There is a unique irreducible representation of M4(C) given by the usual multiplication
of d x d matrices on all column vectors of size d.

Proof. Let V be the d dimensional vector space of column vectors of size d. The standard basis of V' consists
of the vectors ¢; = (0,...,0,1,0,...,0)!,1 < i < d where the 1 appears in the ith spot. Suppose that V" is
a nonzero invariant subspace of V. Let v = )_; vie;, v; €C, be a nonzero element of V’. So v; # 0 for some
1 <i<d. Then (1/v;)Ejv = ej. Since V' is invariant we have that e; € V' for each 1 < j < d. But since
the e; are a basis of V this implies that V = V’. So V is an irreducible representation of M4(C).

Now let W be an arbitrary irreducible representation of A = M4(C). There is some vector w € W
and some a € A such that aw # 0, otherwise W would be the zero representation. If a = ||a;j|| then
aw = 3 i;aijEijw # 0 implies that Ejjw # 0 for some pair (%,7). The space Myq(C)E;; consists of all
matrices tlﬂat are 0 except in the jth column and is isomorphic to V. The map

¢: Md(C)E,'J' —_ w
oy — ab (3.2)

is an isomorphism since both V and W are irreducible. O

So the regular representation of M (C) decomposes as a direct sum of d copies of the unique irreducible
representation V' of My(C), one copy for each columnn in My(C).
An algebra A is semisimple if
A= @,\GAMd;\(C)) (3.3)

where A is a finite index set. The vector d = (da), A € A of positive integers is called the dimension vector
of the algebra A. We will use M4{C) as a shorthand notation for the algebra given by the right hand side of
(3.3). We can view M4C) as the full algebra of block diagonal matrices where the Ath block is dimension
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dx. We denote the matrix having 1 in the (i, )th position of the Ath block and zeros everywhere else by E‘
Denote the matrix which is the identity on the Ath block and 0 everywhere else by I,.

Any trace on $AEAM¢\ (€) is completely determined by a vector t = (1)) of complex numbers such that
{(E}) = ta for each X in the finite index set A. The vector t = (t1) is the trace vectorof the trace ¢, A trace £
on MC) is nondegenerate if and only if ¢ # 0 for all A € A. The only ideals of M{C) = ®reaMa,(C) are
of the form $A€A'de (C) where A’ C A. The Iy, A € A form a basis of the center of Mz(C). Every central
idempotent is a sum of some subset of the I,. There is, up to isomorphism, one irreducible representation
" of ®rea My, (C) for each A € A. It can be given by left multiplication on the space M{C)E}, for any i,j,
1 < ¢,j < dx. The decomposition of the regular representation of @xea Mg, (C) into irreducibles is given by

Dda
MLAC) = GB,\evAWA (3.4),
where W, denotes the irreducible representation corresponding to A.

Matriz units and characters

Let A be an algebra and A a finite index set such that 4 = @ e 4M4,(C) under an isomorphism
$:A = D, ;i M4,(C). (Let MzCT) denote the algebra @ M4, (C).) Warning: The isomorphism ¢ is not
unique; nontrivial automorphisms of M f{C) do exist, just conjugate by an invertible matrix. zx = ¢~1(I»)
is an idempotent and an element of the center of A. The 2z, are the minimal central idempotents of A. They
are minimal in the sense that every central idempotent of A is a sum of z)’s. These elements are independent
of the isomorphism ¢.

A set of elements e . € A, A€ A, 1 <i,j<d, is aset of matric units of A if

0, ifA#u :
e, =¢ 0, HA=p,j#Er (3.5)
ed, ifA=p,j=r.

A complete set of matriz units of A is a set of matrix units which forms a basis of A. Let E" € M 4C) denote
the matrix having 1 in the (3, ])th position of the Ath block and zeros everywhere else. If {e}} is a set of
matrix units of A, the mapping e,j — E,’) determines explicitly an isomorphism A — M4{C). Conversely, an
ismorphism ¢: A — M4 C) determines a set of matrix units e}y = ¢~1(E}). Note that the e} are minimal
orthogonal idempotents in A.

Let Wy, A € A denote the irreducible representations A. By (3.1) and (3.2), for each A € A,

Wh 2 Ael, ' (3.6)

for any i,j, 1 < i,j < dj, where the action of A on Ae;\j is given by left multiplication. For each A € A

denote the character of the irreducible representation W) by x* and for each A € A and a € A let W,-’}(a)
denote the (i, j)th entry of the matrix Wy (a). Note that we can view each Wy (a) as a matrix in MH{C) with
all but the Ath block 0.

Let B be an arbitrary basis of A. Let i = (£3),A € A be a nondegenerate trace on A. For each g € B
let g* denote the element of the dual basis to B with respect to the trace {'such that t‘(gg‘) =1.

(3.7) Theorem. (Fourier inversion formula) The elements

€ij = Z tAWj’\i(g*)g

g€B

form a complete set of matrix units of 4.

Proof. Let ¢: A — ML{C) be given by ¢(a) = ©rWx(a). This is an isomorphism. For each A € A and
1<4,j<dy let ‘
e, = ¢7HE}).
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The set B = {ef‘j} forms a basis of A. The dual basis with respect to the trace { = (tn) is the basis
{(1/t2)ex}-
Z tWi(g")g = Z tAVVjA;((l/tu)ef‘k)?:x
geB kd,p
= Z tX(]/t,,)(Sﬂ(s,'k&)‘#e;:l

LAWY
— e
= 8.']- .

Notice that

kth row of ()~ WA(g*)Wa(g)) = jth row of () Wi(¢")EAWa(9))-
geB geB

By §2 Ex. 1 we know that EgeB Wi(g*)EAWa(g) is independent of the basis B. O

(3.8) Theorem.
Y tax* (g9 = o

J€B
Proof.

dy
Z\ = Zeﬁ
i=1
= ZZtAVVé(y‘)g

i geB

=3 O tawe*)g
g€EB &

=> taMgT)e O
geB

(3.9) Theorem.
3 @) = (dr/82)6rne

g€B
Proof.
drdau = Xk(zu)
=x*(Q_ trx*(9")9)
g€B
=Yt Mex*(s®). O
geB
Ezamples.

1. If A is commutative and semisimple then all irreducible representations of A are one dimensional. This is not
necessarily true for algebras over fields which are not algebraically closed (since Schur’s lemma takes a different form).

2. If R is a ring with identity and M,(R) denctes n X n matrices with entries in R, the ideals of M,(R) are of the
form Mn(I) where I is an ideal of R.

3. If V is a vector space over € and V™" is the space of € valued functions on V then dimV* = dim V. If B is a basis
of V' then the functions &3, b € B, determined by

(1, iftb=bs
bu(bi) = {0, otherwise;
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for b; € B, form a basis of V™. If A is a semisimple algebra isomorphic to MZ{C) = &, ;1 M4,(C), A an index set
for the irreducible representations W of A, then

dimA =" d3, (3.10)

red
and the functions W,’} (VV{)(G) the (7, 7)th entry of the matrix Wi(a), a € A) on A form a basis of A*. The W,’) are
simply the functions 56?1. for an appropriate set of matrix units {eg\j} of A. This shows that the coordinate functions

of the irreducible representations are linearly independent. Since x’\ = Z,- VV,),‘, the irreducible characters are are also
linearly independent.

4. Let A be a semisimple algebra. Virtual characters are elements of the vector space R(A) consisting of the C-linear
span of the irreducible characters of A. We know that-there is a one-to-one correspondence between the minimal central
idempotents of A and the irreducible characters of A. Since the minimal central idempotents of A form a basis of the
center Z(A) of A, we can define a vector space isomorphism ¢: Z(A) — R(A) by setting #(zy) = x* foreach A € A
and extending linearly to all of Z(A).

Given a trace ¢ be a nondegenerate trace on A with trace vector (tx) it is more natural to define ¢ by setting
#(2x/ty) = x*. Then, for z € Z(A),

#(2)(a) = i(za), . (3.11)
$(zu/tu)(a) = Tz ftua)
= {{(1/tu)z40)
= (1/tu)(tux“(a))
= x*(a).

5. If A is a semisimple algebra isomorphic to M#C) = @, ¢ ; M4, (C), A an index set for the irreducible representations
W), of A, then the regular representation decomposes as

——
7 =0, WPh.
If matrix units e?j are given by (3.7) then
r(ei) = tr(dEy) = di.

So the trace of the regular representation of A, tr, is given by the trace vector t= (tx) where t) = d), for each A € A.

6. Let A be a semisimple algebra and let B* = {g*} be a dual basis to a basis B = {g} of A with respect to the trace
of the regular representation of A. We can define an inner product on the space R(A) of virtual characters (Ex. 4) of
A by

<X >= ) x(@xX'(").
Jg€B

The irreducible characters of A are orthonormal with respect to this inner product. Note that if x, X’ are the characters
of representations V' and V"’ respectively, then, by Ex. 4 and Theorem (3.9),

< x, X >= dimHom, (V, V’).

If x» is the character of the irreducible representation W of A then < x>, x > gives the multiplicity of W) in the
representation V asin §1 Ex. 3.



7. Let A be a semisimple algebra and { = (t2) be a nondegenerate trace on A. Let B be a basis of A and for each
g € B let g* denote the element of the dual basis to B with respect to the trace  such that t(gg™) = 1. For each

a € A define
el =) gag”.
g€B
By §2 Ex. 1 the element [a] is independent of the choice of the basis B. By using as basis a set of matrix units e?j of
A we get '
[a] = Z(l/t;)eg\jae;\i
£.7,A
=>_(1/tr)a}el
iy (3.12)

=Y 1/ _a5;O"€d))
A ¥l [
= Y (1/t)x @)z

So x*([a]) = (da/tr)x*(a). By (3.9)

D@3/ (e)lel =D Y (/) /8 (9)xH (62

geB A g€B

:_Z&APZA (3.13)
A

=Z".

Thus the [g], g € B, span the center of A.
8. Let G be a finite group and let 4 =CG. Let f be the trace on A given by

{(G) = allv

where 1 is the identity in G. By Ex. 5 and §2 Ex. 3 the trace vector of  is given by £ty = (dx/|G|) where d) is the
dimension of the irreducible representation of G corresponding to A.

If h € G, then the element
[h] = ghg* =) ghg™!
geB g€B

is a multiple of the sum of the elements of G that are conjugate to h. Let A be an index set for the conjugacy classes of
G and, for each A € A, let C) denote the sum of the elements in the conjugacy class indexed by A. The C), are linearly
independent elements of CG. Furthermore, by Ex. 7 they span the center of €G. Thus A must also be an index set
for the irreducible representations of G. So we see that the irreducible representations of the group algebra of a finite
group are indexed by ¢onjugacy classes.

9. Let G be a finite group. Let C denote the conjugacy classes of G. Note that since
tr(V(hgh™1)) = tr(V(R)V(g)V(h)™") = tr(V(g))

for any representation V of G and all g,h € G, characters of GG are constant on conjugacy classes. Using Theorem
(3.8),
Gloxs = x (@x"(97")

= X oxHe™h)
p g€C,

= 1CIx* ()X (0,
P
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where p’ is such that C, is the conjugacy class which contains the inverses of the elements in C,. Define matrices
Z = ||Ex|l and & = [IE}, 1] by Ex, = x*(p) and £y, = |C,|x*(¢'). By Ex. 8 these matrices are square. In matrix
notation the above is

== = |G|

==

But then we also have that Z'"Z = |G|I, or equivalently that

YN (1) = (IGVIC, D8,
A

10. This example gives a generalization of the previous example. Let A be a semisimple algebra and suppose that B is
a basis of A and that there is a partition of B into classes such that if ¥ and ¥ € B are in the same class then for every

A€ A, :
xM(b) = ). (8.14)

" The fact thot the characters axe linearly independent implies that the number of classes must be the same as the number
of irreducible characters x’\. Thus we can index the classes of B by the elements of A. Assume that we have fixed such
a correspondence and denote the classes of B by Cx, A € A.

Lettbea nondegenerate trace on A and let G be the Gram matrix (2.3) with respect to the basis B and the trace
. g € B, let §* denote the element of the dual basis to B, with respect to the trace , such that #{gg*) = 1. Let
G~! = C = [[egq|| and recall (2.4) that g* = 37 /. g ¢gg’. Then

(/1) = 3 X (@X*(07)

g€B

=3 M @x*() o)

gJe€B g'eB
= ) xM9)egex*(g').

9,9'€B

Collecting g,9’ € B by class gives

(dr/tr)oou =Y, Z xM9)ege x*(9)

2T 9g€C,
g'eC,
A
=Y D xMP)eggxt(7),
/T gEC,
g'eC,
where x*(p) denotes the value of the character x* at elements of the class C,. Now define a matrix C = ||€,r|| with
entries
Cor = Z g9
geC,
g'eC,

and let Z = ||Z,,]| and E' = ||=} || be matrices given by =i, = x*(p) and B}, = (21/dr)x*(p). Note that all of
these matrices are square. Then the above gives that



or equivalently that

Spr = D Epal(ta/da)x (@)X (1)
a,A
=) >0 egplta/bIx (@)X (7)

o,A g€C,
9'€C,

= Z Z E “;yy’XA(”)X'\(T)

A geC,g'eB

=3 Qe ().

gecC, A

Notes and References

The Fourier Inversion formula for representations of finite groups appears in [Se] p. 49. I must thank
Prof. A. Garsia for suggesting the problem of finding a generalization. I know of no references giving a
similar generalization. Theorems (3.7) and (3.8) are due to R. Kilmoyer and appear in [CR2] (9.17) and
(9.19). Ex. 3 is the Frobenius-Schur theorem. Ex. 9 is known as the second orthogonality relation for
characters of finite groups (the first orthogonality relation being (3.8)), see [CR2] (9.26) or [Se] Chap. 2,
Prop. 7. The generalization given in Ex. 10 is new as far as I know. [R1] shows that the Brauer algebra is
an example of semsimple algebra that is not a group algebra with a natural basis that can be partitioned
into classes such that (3.13) holds.
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4. Double centralizer nonsense

Tensor products

If P and @ are two matrices with entries from C, then the tensor product of P and Q is the matrix
PeQ=|p;Qll, (4.1)

where p;; denotes the (4,7)th entry in P. If V and W are two vector spaces with bases By = {v;} and
Bw = {w;} respectively, the tensor product V ® W is the vector space consisting of the linear span of the
words v;w;. If V' is dimension n and W is dimension m, then V ® W is dimension nm. In general, for any
v €V and w € W, the word vw can be expressed in terms of the words v;w; by using linearity, i.e. for all
¢,d €C, v;,v; € By and w,,w, € Bw,

(cvi + dv;)wr = cviw, +dv;w, and
vi{cwy + dw,) = cv;w, + dv;w,.

Suppose that A and C are two arbitrary algebras. We can define an algebra structure on the vector
space A ® C (we distinguish the tensor product of algebras from the vector space case by writing (a, c)
instead of ac for a word in A® C, a¢ € 4, ¢ € C) by defining multiplication of elements of 4 ® C by

(ay,¢1)(az,¢2) = (araz,cic2), (4.2)

for all a;,as € A and ¢1,¢2 € C, and extending linearly. ’
Suppose that V and W are representations of A and C respectively. Define an action of A ® C on the
vector space V@ W by

(a,c)(vw) = (av)(cw) (4.3)

for all (a,c) and vw,a € A,c€ C,veV, weW. This defines a representation of A ® C on V ® W under
which the action of (a,¢),a € A,c € C on V ® W is given by the matrix

V(a) ® W(c).

Centralizer of a completely decomposable representation

Let V be a completely decomposable representation of an algebra A. Assume that
Vi Wi,

where the W; are nonisomorphic irreducible representations of V. This means that we can decompose V
into irreducible subspaces Vy;, 1 <A <n, 1< j < m,, so that

V = @iV,

where for each A and j, V; = W,. Let d) = dim W;. Choosing a basis on each of the Vj; gives a basis of V
which we denote B. Using the basis B of V, the algebra of the representation V is

Imx(de(C)) 0 O Tt 0
v(4) = o ImMa) 0 0 (44)
0 0 e 00 I, (Mg, (C))

(1.11) shows that the algebra of matrices that commute with all matrices in V(4), is

Mml(Wl'(A)) 0 0o - 0
va=| 0 M%) 0 e 0
0 0 o 0 Mp (Wa(A)



Since, by Schur’s Lemma, W) (A) = I, (€), we get that

M, (13,(C)) 0 c 0 - 0
—_ (L e
= 0 MW@ 0o (45)
0 0 e 0 My, (14,(0))
(4.6) Theorem. If a representation V' of an algebra A is completely decomposable in the form
V= GBYA':IW?”“ 3
where the W, are nonisomorphic irreducibles, then the centralizer V(A) of V(A) is semsimple and
V(A) = &%= Mm,(C).
Proof. By a change of basis on V' we can put the matrices of (4.5) in the form
14, (Mm,(C)) 0 0 - 0
0 0 e 0 I, (M (©))

These matrices are of exactly the same form as those in (4.4) except that the dxs and m,s are switched!!
(4.7) shows that V(A4) = ®%_, My, (C) as algebras. O

Let B be an algebra with an action on V such that V(B) = V(A). Let B’ be the kernel of the action of
B on V and let C be the quotient B/ B’ so that the induced action of C on V is injective. C = V(B) = V(A).
From (4.5) we see that with respect to the basis B on V the action of an element ¢ € C is given by a
matrix of the form
Q1 ® I, 0 0 .. 0

0 Q2®Im; 0 b 0

. R E (4.8)
0 0 ot 0 Qn Q Im,.
where Q» € Mm, (C). This action determines a map

¢: C —_— @Ame(C)
0 Q2 ttT 0 ’
0 0 --- Q,

which, by Theorem (4.6), is an isomorphism. Note that, for each A, the map

q —

CA: C - me(c)

. (4.9)

is an irreducible representation of C.
Let E}j denote the matrix in &) M,,, (C) that is 1 in the (i, j)th entry of the Ath block and 0 everywhere

else. Define a set of matrix units ef‘j ,1<€A<n1<4i,j<myinC by
el = ¢7H(EY).
The action of the element e on V, is given by the matrix E} ® Iz € V(A). The action of this matrix on
V' is the projection p: V — Vy;;
Vai = eV,
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Conversely, if {e;\j} is a set of matrix units of C, then, since 1 =}, ; e} as an element of C, we have a

decomposition
V=1-V=0__ e)V=> eV
A A -

Since the action of A on V commutes with the action of C' we have that ae}}V = e}aV C elV forall a € 4,

showing that each of the spaces e}V is A-invariant. Since, §1 Ex. 5, e,’-\,-Vﬂe;-‘jV =0 unless A = pand i = j,

the decomposition given above is a direct sum decomposition of V. This decomposition is a decomposition
of V into irreducible subspaces under the action of A,

V=@,V (4.10)
Define an action of C® A on V by

(g,0)v = qav

where (¢,8) € C® A and v € V. Since the actions of C and A on V commute this action is well defined
and makes V' into an C ® A representation. Theorem (4.6) shows that the irreducible representations of C
are in one to one correspondence with the irreducible representations of A appearing in the decomposition
of V. Let C» denote the irreducible representation of C corresponding to A.

(4.11) Theorem. As C ® A representations,
Vol ;O W,.

Proof. With respect to the basis B of V the action of (g,a) € C ® A on V is given by the matrix product

Q1 ® Im, 0 0 I;m, ® Wi(a) 0 . 0
0 Q29I - 0 0 I, @ Wa(a) --- 0
0 e 0 Qn®In, 0 - 0 Inm, ® Wy(a)
which is equal to ‘
Q1 ® Wi(a) 0 0 - 0
0 Q:®Wafa) 0 - 0 (4.12)
0 0 o 0 Qn®Wy(a)

Recalling (4.9) we see that the action of each block of (4.12) is by the representation Cy ® W). O

Ezamples.

1. Let G be a group and let V and W be two representations of G. Define an action of G on the vector space V@ W
by

g(vw) = (gv)(gw),

forallg € G,v € V and w € W. The resulting representation of & is the Kronecker product V @q W of the
representations V' and W (see also §5 Ex. 4). In matrix form, the representation' V ® W is given by setting

(V@i W)(g) = V() ® W(g),

for each ¢ € G. Note, however, that if we extend this action to an action of A =CG on V @ W, then for a general
a € A, a(vw) is not equal to (av)(aw)and (V ®4 W)(a) is not equal to V(a) @ W(a).
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2. Theorem (4 8) gives that there is a one-to-one correspondence between minimal central ldempotents zA of C and
characters x ‘4 of irreducible representations of A appearing in the decomposition of V. Let Let Xc be the irreducible
characters of C' and for each A set d§ = (1), so that the dx are the dimensions of the irreducible representations of
C. The Frobenius map is the map .
F: Z(0) —+ R(A)
(1/d5)2f —  xi

Let t: C ® A —C be the trace of the action of C ® A on the representation V. By taking traces on each side of
the isomorphism in Theorem (4.11) we have that

t(g,0) = ) _x&(9xha(a). (4.13)
> |

Let ic = (t{) be a nondegenerate trace on C, let B be a basis of C and for each g € B let g* be the element of the
dual basis to B with respect to the trace fc such that £c(gg*) = 1. Then, for any z € Z(C), the center of C,

F(z) = tc(zg")g,-), (4.14)
g€B .

since, using (3.8) and (3.9),
F(E7/d0) = 3 (1/d0)e (] a4, )
g

D A AR
g

=) (S /dS)xE(") D x2 (A ()
g A

- Z(tff 1d$)8,0 (d5 [E)x4 ()

= x,,( ).
If we apply the inverse F'~! of the Frobenius map to (4.13) we get

F7Y(K(g,)) = D x&(@)(=5/d5).
A

Formula (3.13) shows that

F=Y (g, ) = (_(t5/d5)25)a)-
A

‘In the case that Zc is the trace of the regular representation S, (t$/dS)$ =1 and F~Y(t(g, ")) = [q].

Notes and References

“Double centralizer nonsense” is a term that has been used by R. Stanley in reference to Theorems (4.6)
and (4.12). I have chosen to adopt this term as well. These results are originally due to I. Schur [Sc1],[Sc2],
and are often referred to as the Double Commutant Theorem, or, in the special case of the representation
V®/ dimV = n of Gi(n), Schur-Weyl duality. This was the key concept in Schur’s original work on the
rational representations of Gl(n).

The Frobenius map given in Ex. 3 is a generalization of the classical Frobenius map [Mac] §1.7. In a
paper [Fr] that demonstrates absolute genius, Frobenius used it as a tool for determining the characters of
the symmetric groups.



5. Induction and Restriction.

Let A be a subalgebra of an algebra B. .
Let V be a representation of B. The restriction V |§ of V to A to be the representation of A given by the
action of A on V. Let W be a representation of A. Define B ®4 W to be all formal linear combinations of
elements b @ w, where b € B,w € W with the relations

(b1 +b2) @ w = (b ® w) + (b2 + w),

b® (wy + w2) = (b@w1) + (b ® wy),

(ab) @ w=b® (aw) = a(b® w),
ba@w=>bQ® aw,

(5.1)

for all a € A,b,b1,b2 € B,w,w;,w; € W and o €C. The induced representation W 15 is the representation
of B on B®4 W given by the action .

(Y ® w) = (bb) @ w, (5.2)
forallb, e BandweW.

(5.3) Proposition. Let A C B C C be such that A is a subalgebra of B and B is a subalgebra of C. Let
V, W1, V2 be representations of C and let W, W, W3 be representations of C.

) (ew)i{=nifen:|].
2) (VI A=V ig.
3 (Mewii=wn1ieva1}.
) (VIDIE=VIS.
Proof. 1) and 2) are trivial consequences of the definition. The fact that the map
¢: BRa(Vridlz) — (BRaV1)®(B®aVs)
b® (v1,v2) = (3 v,b® ).
is a B-module isomorphism gives 3). The map
$1: CR®p(BR®4V) — (CR®pB)®,4V
c®(bv) — (c®d) v
and the map
¢2: C®B — C
c®b — cb
are both C-module isomorphisms. So
C®B(B®AV)E.‘(C®BB)®AV§C®A v,
giving 4). O
Note: Proving that these maps are isomorphismé is not a complete triviality. One must show that they are’

well defined (by showing that they preserve the bilinearity relations (5.1)) and that the inverse maps are
also well defined. It is helpful to use the fact that the tensor product is a universal object as given in Ex. 1.

(5.4) Theorem. (Frobenius reciprocity) Let A C B be algebras and Vi and W, be irreducible representa-
tions of A and B respectively. Then
Homp(Va 15, W,) = Homua (Va, W, |5).
Proof. The map
. ¥ HomB(B ®4 V)\,Wu) — HOIT!A(V,\,W# 12)
® — ¢’ '
where
$'(v) = ¢(1®v),
is an isomorphism. The inverse map is given by ¥~1(¢') = ¢ where ¢ is given by
$(b® v) = bp(1 ® v) = bo'(v),

so that ¢ is a B-module homomorphism. O




Branching rules

Now suppose that A is a subalgebra of B and that both 4 and B are semisimple. Let A and B be
index sets for the irreducible representations of A and B respectively. Let V) and W, be the irreducible
representations of 4 and B labelled by A € A and g € B respectively. Let gru €T be such that

A TRZ @, p0uW, (5.5)
for each pair (A, p),A € 4, € B. Frobenius reciprocity implies that
Wy 125 @,\ejvgkuvl\ (5.5")

for each u € B. An equation of the form (5.5) or (5.5') is called a branching rule between A and B.

One can produce a visual representation of branching rules in the form of a graph. Construct a graph
with two rows of vertices, the vertices in the first row labelled by the elements of A and the vertices of the
second row labelled by the elements of B such that the vertex labelled by A € A and the vertex labelled by
4 € B are connected by g, edges. This graph is the Bratteli diagram of A C B.

- As an example, the following diagram is the Bratteli diagram of €S, C €Ss, where S, denotes the
symmetric group. Recall that the irreducible representations of S; and S3 are indexed by partitions of 2 and
of 3 respectively.

amn @
S 2
§ 3
) @n (©)
Note that in this example each g, is either 0 or 1; &mre are no multiple edges. (
Let p € A and consider the representation of A given by left multiplication on the space Aa. Then e
(Ap) 13= Bp. (5.6)

To see this, informally, one notes that since Ap C A we can move Ap across the tensor product to give,
(Ap) 18=B®41 Ap=BAp®41=Bp®4 1= Bp.
BAp = Bp since 1 € A. More formally we should show that the map

B®4Ap — Bp
b®ap +— bap

is well defined and has well defined inverse given by
b® p — bp.

Now let p, be a minimal idempotent of 4 such that the action of A by left multiplication on Ap, is a
representation of A isomorphic to the irreducible representation V) of A (3.6). Suppose that

=) 4

is a decomposition (§1 Ex. 7) of the minimal idempotent py of A into minimal orthogonal idempotents of
B. Then Bpy = BY_ qi = )_ Bg; gives a decomposition of Bp, into irreducible representations. So, by (5.6)
and the branching rule (5.5), for exactly g,, of the ¢; we will have that Bg; is isomorphic to the irreducible
representation W, of B. We can write the decomposition of py as

9p

PA= DD du : (5.7) \
pueB =1 , L/

where each g,;is such that Bg,, is isomorphic to the irreducible representation W, of B.

2



Characters of induced representations

Let V bea representatlon of A where A is a subalgebra of an algebra B and both A and B are semisimple.
Let xv be the character of V and let Xvis be the character of V 18. For each a € A let a* denote the
element of the dual basis to .4 with respect to the trace, tr, of the regular representation of A such that
tr(aa*) = 1.

Let B be a basis of B and let i = (tB) be a nondegenera.te trace on B. For each b € B let b* denote
the element of the dual basis to B with respect to the trace i such that t(bb*) = 1. For any element = € B

we set (as in §3 Ex. 7)
(2] = ) bab”.

beB

(5.8) Theorem.
xvia(®) =Y xv(a) < [8],a" >,

where < b3,by >= {B(blbz)

Proof. In keeping with the notations of earlier sections, let A and B be index sets for the irreducible
representations of A and B respectlvely and let X A,A € A and x% B4 € B denote the irreducible characters
of A and B respectively. Let z#,A € A and z ,p € B denote the minimal central idempotents of A and B
respectiyely. Let d¢ = x%(1) so that dj is the dlmensmn of the irreducible representation of A corresponding

to A € A. ‘
We have the following facts:

1) (Theorem (3.10)) For each A € A, u € B,

2} = Z t{x4(a)a*, and
aEA

Z tu X5 (0",

beB

respectively.
2) (§3 Ex. 5) The trace vector (t{) of the trace of the regular representation of A is given by t# = d4 for
~all A € A.
3) Suppose that V = @ A€ AVe"“ gives the decomposition of V into irreducible representations of A. Then

xv(a) =Y mixi(a),
Aed ‘

for all a € A.
4) The branching rule (5.5) for A C B gives that

Xvia®) =) m Y uxs®),

A€A peB

for all b € B.
5) For each A € A let

d3
A _ A
A= E ;PM
i=1

be a decomposition of z§! into minimal orthogonal idempotents of A. For each X € Aand1<i< dg
let

Iap

=)D

peB i=l



be a decomposition (5.7) of pf; into minimal orthogonal idempotents of B. g,; denotes a minimal
idempotent in the minimal ideal of B corresponding to g € b, i.e., a minimal idempotent such that the
representation Bg,j of B is isomorphic to the ireeducible representation of B correspondmg topu€ B.

Then, by (3.12),
(431 = (1/8)25,

for each minimal idempotent qffj, since for each v € B, x,,(qf'j) = fyup.
6) Let by,bs € B. Using the trace property,

< [ba], b2 > = Tp(Y bbib"bo)
beB

=1{p(D_ b1bb:b)
beB
=< bl,[bQ] >.

‘Now, define
2= (ma/df)zf.

Aed

=) m Z(t /d)xa(a)a”

A€EA

= Z xv(a)a®,

Then, using 1), 2) and 3),

and, by 5), 1) and 4),
[z] = Z(m,\/d )41

a3
= 2_(ma/af) 3 ph]

Irp

= Z(mz\/df\‘) Z S el

:=lp]1

9ap

= Z(mA/d )ZZZ(I/tB)z
i=1 p j=1

= Z Z(mA/dA)dA aau(1/8) D By ()b
b
- Z XVTg(b)b .
b

Combining these and using 6) we get

=< [Z xv(a)a*],b >
=Y (@ <[a)b >
= ZXV(a) <a*,[b] >

as desired. O



Centralizers

Let A be a subalgebra of an algebra B, and let V be a representation of B. Let A and B be the
centralizers of V(A) and V(B) respectively. Then B is a subalgebra of A; AC B and A D B.

(5.9) Theorem. Suppose that

Wp lﬁ":—‘ E Jur V)‘,
A

V) j_%&‘ z W
I‘ .
are the branching rules for A C B and B C A respectively. Then for all A, u
gﬂA = g:\p‘
Proof. We know, Theorem (4.11), that, as A ®A representations,
VooV,

and as B @ B representations,

VoW, 0W,,

where V3,V x, Wy, and W, are irreducible representations of A, 4, B, and B respectively.
A® B is a subalgebra of both A® A and B ® B. We have that as A® B representations

V=V 492 = 9,15 @ (9ug), W)

= @/\,ugipVA & Wﬂ.
On the other hand as A ® B representations

v=v 1?3% =D,(Prga)OW,

ZOrudurVa ® Wu- O
Ezamples.

1. Let A, B and C be vector spaces. A map f: A x B — ( is bilinear if
f(al + a2)b) = f(al)b) + f(a2) b)r
f(aybl + 62) = f(an bl) + f(a,b2)1

f(aa,b) = f(a,ab) = af(a,b),
for all a,ay,a2 € A, b, by, b2 € B, o €C.

The tensor product is given by a vector space A ® B and a map ¢: A x B — A ® B such that for every bilinear
map f: A X B ~ C there exists a linear map f: A @ B — C such that the following diagram commutes.

Ax B

L

i
A®B

One constructs the tensor product A ® B as the vector space of elements a ® b, ¢ € A, b € B, with relations

(a1 +a)®b=0a, @b+ar®b,
a®(bi+b)=a®b +aQb,,
(aa) @b =a ® (ab) = a(a ®b),

5



for all a,a1,a2 € A, b,b1,b2 € B and o« €C. The map i:A x B — A Q B is given by i(a,b) = a ® b. Using the
above universal mapping property one gets easily that the tensor product is umque in the sense that any two tensor
products of A and B are isomorphic.

If R is an algebra and A is a right R-module (a vector space that affords an antirepresentation of R) and B a left
R-module then one forms the vector space A Qr B as above except that we require a bilinear map f: A x B — C to
satisfy the additional condition

f(ar,b) = f(a,rd)

for all # € K. Then the tensor product A ® g B is a vector space that satisfies the universal mapping property given
above. To construct A ® r B one again uses the vector space of elements a ® b, a € A, b € B, with the relations above
and the additional relation

ar®b=a®rb,

forallr € R.
2. Let A C B be semisimple algebras such that A is a subalgebra of B. Let A and B be index sets for the

irreducible representations of A and B respectively, and suppose that { ,’;}, pe fi, is a complete set of matrix units
of A.

(5 10) Theorem. [Bt] There exists a complete set of matrix units {e},},A € B, of B that is a refinement of the

,J- in the sense that for each u € A and each i,

— E A
- €rry

for some set of €.

Proof. Suppose that B = @Aeéde(C)' Let z7 be the minimal central idempotent of B such that I = Bz, is the
minimal ideal corresponding to the A block of matrices in @A Mg, (C).

For each g € A and each i decompose f; into minimal orthogonal idempotents of B (§1 Ex. n, =3
Label each p; appearing in this sum by the element A € B which indexes the minimal ideal I = = Bp; B of B. Then

. da
== T3
u,

A€3j=1
Now,
B=1-B-1= ), >  pl'Bpt.
1< i<d
A\ u€eB '<d:
IfA# y then the space P} Bp} = p} B(zBp") = p}zP Bp} = 0 for all 4, j. Since p} = p} - 1-p} € p}Inp} and

D; Bpj p; Bp, = p; I,\p, # 0, we know that p; BpJ is not zero for any 1 < 3,7 < d). Futhermore, since the dimension
of Bis Y, d? each of the spaces p? BpJ is one dimensional.
For each p} define e" = p, .ForeachAandeach1 <7< j<d)let e . be some element of p? Bp) p;. Then choose

J, € pj B p, such that e} = e,»,-. This defines a complete set of matrix umts of B. O

3] ]s

3. Let G be a finite group and let H be a subgroup of G. Let R = {gi} be a set of representatives for the left cosets
gH of H in G. The action of G on the cosets of H in G by left multiplication defines a representation Ty of G. This
representation is a permutation representation of G. Let g € G. The entries 1rH(g). N of the matrix 7g(g) are given
by T (9)iri = 8irk where k is such that gg; € g H.

Let V be a representation of H. Let B = {v;} be a basis of V. Then the elements § ® v; where g € G,v; € B
span CG @ V. The fourth relation in (5.1) gives that the set {g; ® v;}, gi € R, v; € B forms a basis of
CG ScyV-



Let g € G and suppose that gg; = g1 h, where h € H and gx € R. Then

99: ®v; = gth ® vj
= hvj
=Y 0k @ vV (h)y5
it
= Z gyt ® vj'V(h)j'jsi’k

L
4 'J

E= E gir ® 'vjl V(h)JIJ TH(g)"l“_

Ty
v

Then
xvig(@) = D 99 ® ilgee;
gi€Rv;€B
= ) V(e ew)js-

g3\ U5
99:€g9iH

Since characters are constant on ¢onjugacy classes we have that

xvig(@=@/HD Y. Y xv(h7'g ggih)

heH 9i
h='g lgg;heH
= (1/H]) )_ xv(a),

a€H
a€C,

where Cy denotes the conjugacy class of g. This is an alternate proof of Theorem (5.8) for the special case of inducing
from a subgroup H of a group G to the group G.

4. Define CG ®4 €G to be the subalgebra of the algebra CG ® CG consisting of the span of the elements ¢ ® g,
g € G. Thern CG=CG @4 CG as algebras.

_ Let V) and V2 be representations of G. Then the restriction of the CG ® CG representation V' = V; @ V; to the
algebra CG ®4 CG is the Kronecker product (§4 Ex.1)

— CGeCG
igaVa=V1@ VW2 lCG®‘CG
of VlA:md V2. Since CG=CG ®4 CG we can view V; ®4 V, as a representation of G.
Let Vi and V), be irreducible representations of G Such that V\ ® V,, appears as an irreducible component of the
CG ® CG representation Vi ® V2. The decomposition of the Kronecker product

— CGeCG A
VA ®d V, = V1 ® Vz lCGS‘CG—- @,,yf(#Vu
into irreducible representations V), of G is given by the branching rule for CG ® CGOCG ®4 CG. Let C; and C3 be
the centralizers of the representations V; and V5 respectively. Let C be the centralizer of the CG ® CG representation
V =V; ® V5. Applying Theorem (5.9) to V where A =CG ® €G and B =CG ® 3 CG= G shows that the g%, are
also given by the branching rule for C;  C; C C.

Notes and References

The main result, Theorem (5.8), of this section is a generalization of the formula for the induced character
for finite groups, see [Se] §7.2. I have been unable to find any similar result in previous literature.
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