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Abst rac t  

In my work on the Brauer algebra, which is not a group algebra but is a semisimpie algebra with a 
distinguished basis, I have used the group algebra of the symmetric group as a guide, and tried to find 
generalizations to the Brauer algebra of as many of the properties of the symmetric group as possible. One 
of the outcomes of this work was the discovery that much of the representation theory of general sernisimple 
algebras can be obtained in a fashion exactly analogous to the method used for finite groups. In this chapter 
I develop this theory from scratch. Along the way I prove, in the setting of semisimple algebras over C, 
an analogue of Maschke's theorem, a Fourier inversion formula, analogues of the orthogonality relations 
for characters and a formula giving the character of an induced representation, induced from a semisimple 
subalgebra. Section 4 reviews the double centralizer theory of I. Schur and defines a "F'robenius map" in the 
most general setting, a representation of a sernisimple algebra. Such a map has proved useful in the study 
of the characters of the symmetric group, the Brauer algebra, and the Hecke algebra, 



1. Representat ions 

An algebra is a vector space A over C with a multiplication such that A is a ring with identity and such 
that for all a1,az E A and c EC, 

(ca1)az = al(ca2) = c(ala2). (1.1) 
More precisely, an algebra is a vector space over C with a multiplication that is associative, distributive, has 
an identity, and satisfies (1.1). Suppose that a l , a z , .  . . , a, is a basis of A and that cf, are constants in Q= 
such that 

n 

aia j  = C c t o k .  
k=  1 

(1.2) 

It follows from (1.1) and the distributive property that the equations (1.2) for 1 5 i, j 5 n completely 
determine the multiplication in A. The c$ are called structure constants. The center of an algebra A is the 
subalgebra 

Z(A) = {b E A(ab = ba for all a E A). 

A nonzero element p E A such that pp = p is called an idempotent. Two idempotents p1,p2 E A are 
orthogonal if p1p2 = p2p1 = 0. A minimal idempotent is an idempotent p E A that cannot be written as a 
sum p = p l  + pz of orthogonal idempotents pl ,pz E A. 

For each positive integer d we denote the algebra of d x d matrices with entries from C and ordinary 
matrix multiplication by Md(C). .We denote the d x d identity matrix in Md(C) by Id  For a general algebra 
A, Md(A) denotes d x d matrices with entries in A. We denote the algebra of matrices of the form 

by I,(A). Note that I,(A) A, as algebras. The trace, tr(a),  of a matrix a = Ilaij(( is the sum of the 
diagonal entries of a ,  t r (a)  = xi aii. 

An algebra homomorphism of an algebra A into an algebra B is a C-linear map f :  A -+ B such that for 
all a l , a z  E A, 

f (3 )  = 1, 
f (a1az) = f ( a d f  (az). 

(1.3) 

A representation of an algebra A is an algebra homomorphism 

The dimension of the representation V is d. The image V(A) of the representation V is a finite dimensional 
algebra of d x d matrices which we call the algebra of the representation V.  I t  is a subalgebra of Md(C). A 
faithful representation is a representation which is injective. In this case the algebra V(A) is called a faithful 
realization of A and A 2 V(A). The character of the representation V of A is the function ~ v :  A -.C given 
by 

x v ( a )  = tr(V(a)). (1.4) 

An anti-representation of an algebra A is a C-linear map V': A + Md(C) such that for all a l ,  a2 E A, 

V1(l) = I d ,  

~ ' ( a l a z )  = v1(az)v'(a1 ). 

As before the dimension of the anti-representation is d and the image, V1(A), of the anti-representation is 
an algebra of matrices called the algebra of the anti-representation. 

The group algebra Q=G of a group G is the algebra of formal finite linear combinations of elements of 

i G where the multiplication is given by the linear extension of the multiplication in G .  The elements of G 
. - constitute a basis of CG. A representation of the group G is a representation of its group algebra. 



Let A be an algebra. An A-module is a vector space V with an A action A x V - V such that for all 
a ,  a l ,  a2 E A, v, vl,v2 E V, and cl,c2 E@, 

An A-module homomorphism is a @-linear map f :  V --+ V' between A-modules V and V' such that for all 
a ~ A a n d v E V ,  

f (av) = a f  (v). (1.6) 

An A-module isomorphism is a bijective A-module homomorphism. 
By condition 3 of (1.5) the action of a E A on V is a linear transformation V(a) of V. If we specify a 

basis B of V then the linear transformation V(a) can be written as a d x d matrix, where dim V = d. In 
this way we associate t o  every element of A a d x d matrix. This gives a representation of A which we shall 
also denote by V. 

Conversely, if T is a d dimensional representation of A and V is a d dimensional vector space with 
basis B then we can define the action of an element a in A by the action of the linear transformation on V 
determined by the matrix T(a) so that for all v E V, 

In this way V becomes an A-module. Thus the notion of A-module is equivalent to  the notion of representa- 
tion. When we view the A-module we are focusing on the vector space and when we view the representation 
we are focusing on the linear transformations (matrices). 

Let V be an A-module with basis B and let B' be another basis of V and denote the change of basis 
matrix by P. Let a E A and let V(a), V1(a) be the matrices, with respect to the bases B and B' respectively, 

,. 
of the linear transformation on V induced by a. Then by elementary linear algebra we have that 

This leads us to the following definition. Two d dimensional representations V and V' of an algebra A are 
equivalent if there exists an invertible d x d matrix P such that (1.7) holds for all a E A. Isomorphic modules 
define equivalent representations. 

The direct sum $ V2 of two A-modules Vl and V2 is the A-module of d l  pairs (vl, v2), vl E Vl and 
v2 E V2, with the A action given by 

a(v1, v2) = (av1, av2), 

for all a E A. The direct sum Vl @ V2 of two representations Vl and V2 of A is the representation V of A 
given by 

Direct sums of n > 2 representations or A-modules are defined analogously. We denote V @ V @ a . @ V, n 
factors, by V@". Note that the algebra of the representation V@", Ve"(A), is I,(V(A)). 

An A-invariant subspace of an A-module V is a subspace V' of V such that 

{av'la E A,vl E V') = AV' 5 V'. 

An A-invariant subspace of V is just a submodule of V. Note that the intersection V' n V" of any two 
invariant subspaces V', V" of V is also an invariant subspace of V. 

An A-module with no submodules is a simple module. An irreducible representation is a representation 
that is not equivalent to  a representation of the form 



where V' is also representation of A. If V', V" are invariant subspaces of a representation V and V' is 
irreducible then V' n V" is either equal to 0 or V'. A completely decomposable representation is a represen- 
tation that is equivalent to a direct s u m  of irreducible representations. An algebra A is called completely 
decomposable if every representation of A is completely decomposable. 

The  centralizer of an algebra A of d x d matrices is the algebra 2 of d x d matrices ii such that for all 
matrices a E A, - 

cia = aE. - (1.10) 

The centralizer of a representation V of an algebra A is the algebra V(A) .  

Ezamples. 

1. Let A be an algebra of d X d matrices. Since d l  matrices in A commute with all elements of x, 
A E 7. 

Hence, 

- 
I, ( A )  = ~ n ( 3  and 

Mn (A)  = I n  (3. 
- - 
I,, (A) = I,,(Z). 

2. Schur's lemma. Let Wl iind W2 be irreducible representations of A of dimensions dl and d2 respectively. If B 
is a dl x d2 matrix such that 

Wl(a)B=BWz(a), for a l l a E A ,  

then either 
1) Wl Wz and B = 0, or 
2 )  Wl 'Y W2 and if Wl = W2 then B = cIdl for some c EC. 

Proof. B determines a linear transformation B: Wl 4 W2. Since Ba = aB for dl a E A we have that 

B(awl) = Bawl = aBwl = aB(wl), 
d '  

1. for all a E A and wl E Wl. Thus B is an A-module homomorphism. ker B and im B are submodules of Wl rrnd Wz 
respectively and rue therefore either 0 or equal to Wl or Wz respectively. If ker B = Wl or imB = 0 then B = 0. In 
the remaining case B is a bijection, and thus an isomorphism between Wl and W2. In this-case we have that dl = d z .  
Thus the matrix B is square and invertible. 

Now suppose that Wl = W2 and let c be an eigenvdue of B. Then the matrix eld, - B is such that wl (a)(cId, - 
B )  = (cI,j, - B)Wl(a) for aU a E A. The argument in the preceding paragraph shows that cId, - B is is either 
invertible or 0. But if c is an eigenvalue of B then d e t ( c l ,  - B )  = 0. Thus cld, - B = 0. 0 

3. Suppose that V is is completely decompoecrble representation of iin algebra A and that V Y @ A W ~ ~ ~  where the 
Wx are nonisomorphic irreducible representations of A. Schur's lemma shows that the A-homomorphisms from Wx to 
V form a vector space 

IiomA(Wx, V )  2XcBmA . 
The multiplicity of the irreducible representation Wx in I /  is 

r n ~  = dim H o m ~  ( WA, V) . 

4. Suppose that V is a completely decomposable representation of m algebra A and that v V @ A  wFmA where the 
Wx are nonisomorphic irreducible representations of A and let dim Wx = d ~ .  Then 

V ( A )  % $$,w,$~'(A) = @xIm,(Wx(A)) $xWx(A). 
If we view elements of $AI,,WA(A) as block diagonal matrices with r n ~  blocks of size dx x d~ for each A ,  then by 
using EX. 1, and Schur's lemma we get that 

V ( A )  @xlrn,(CVx(A)) = $ A M ~ , ( W A ( A ) )  

= @ A  MmA (IdA (c)) - 
5 .  Let I /  be an A-module and let p be an idempotent of A .  Then pV IS a subspaee of I/ and the action of p on I /  is a 
projection from V to pv. If pl,p:! E A are orthogonal ldempotents of A then pi V and p2V are mutually orthogonal 

( 
y~bspaces of V ,  since if plv = pzv1 for some v and v' in V then plv = plplv = p1p2v1 = 0. SO V = plV $ p2v. 



6. Let p be an idempotent in A and suppose that for every a E A ,  pap = k p  for some constant k EC. If p is not 
minimal then p = pi  + pz ,  where p l , p 2  E A are idempotents such that pip2 = p2p1 = 0. Then pl = p p l p  = k p  
for some c o n s t ~ ~ t  k EC. This implies that pl = p i p i  = kppl  = k p i ,  giving that either k = 1 or pl = 0. So p is 
minimal. 

7. Let A be a finite dimensional algebra and suppose that z E A is an idernpotent of A. If z is not minimal then 
z = pl + p2 where pl and p2 are orthogonal idempotents of A .  If any idempotent in this sum is not minimal we 
can decompose it into a sum of orthogonal idempotents. We continue this process until we have decomposed z as a 
sum of minimal orthogonal idempotents. At any particular stage in this process z is expressed as a sum of orthogonal 
idernpotents, t. = zi pi. SO z A  = zi p i A .  None of the spaces p i A  is 0 since pi = pi . 1 E p i A  and the spaces p i A  
are all mutually orthogonal. Thus, since z A  is finite dimensional it will only take a finite number of steps to decompose 
z into minimal idempotents. A partition of unify is a decomposition of 1 into minimal orthogonal idempotents. 



2. Fini te  dimensional algebras 

The trace, tr(a), of a d x d matrix a = (laij(I is the sum of its diagonal elements, tr(a) = C, aii. A trace 
<on an algebra A is a C-linear map < A  -Q: such that for all a ,  b E A, 

Every representation V of A determines a trace <v on A given by &(a) = tr(V(a)) where a E A. A trace 
is nondegenerate if for each a E A, a # 0, there exists b E A such that qba) # 0. A trace <on A determines 
a symmetric bilinear form <, > on A given by 

Suppose A is finite dimensional and let B = {bl, b2,. . . , b,) be a basis of A. A basis B' = {b;, b;, . . . , b:) 
of A is dual to B with respect to the form <, > if 

< bf, bj >= dij. 

The Gram matriz of A is the matrix 
G = 1) < bi,  bj > (1. 

Suppose that B* exists and that C = I(cij(( is an s x s matrix such that 

Then 

In matrix notation this says that CG = I,. So C must be G- ' . Conversely, if C = G-l then defining bf by 
(2.4) determines a dual basis B*. This shows that B* exists if and only if G is invertible and that if i t  exists 
it ,is unique. 

(2.5) Proposition. If r i s  a trace on a finite dimensional algebra A with basis B = {bl, bz, . . . , b,) and <, > 
is given by (2.2) then the Gram matrix G is invertible if and only if c i s  nondegenerate. 

Proof. The trace <is degenerate if and only if there exists a b E A such that flab) = 0 for all a E A. This 
is the same as saying that <bib) = 0 for each basis element b;. If b = xi cjbj, cj EC, we have that the c, 
satisfy the system of equations 

This system has a nontrivial solution if and only if the matrix G = ((<bibj)(( is singular. 0 

Symmetrization 

Let A be a finite dimensional algebra with a nondegenerate trace cand  let B be a basis of A. Let B* 
be the dual basis to B with respect to the form <, > given by (2.2). For g E B let g* denote the element of 
B* such that qgg*) = 1. Let Vl and V2 be representations of A of dimensions dl and dz respectively. 

(2.6) Proposition. Let C be any dl x d2 matrix with entries in C. If 

then, for any a E A, 



Proof. Let a E A. Then 

= < ag, h* > V I ( ~ ) C V ~ ( ~ * )  
g,hEB 

If Vi and V2 are irreducible then Schur's lemma gives that [q = 0 if Vl and fi are inequivalent and that if 
Vl = V2 then [C] = cId,  for some c EG. 

Let A be a finite dimensional algebra. The action of A on itself by multiplication on the left turns A 
-t 

into an A-module. The resulting representation is the regular representation of A and we denote it by A .  
+ 

The set is the same a s  the set A, but we distiniguish elements of by writing %' E A .  As usual we 
+ 

denote the algebra of this representation by A (A). We denote the trace of this representation by t r .  Notice i ,  
that the trace t r  of the regular representation can be given by 

where a E A and B is any basis of A. Here a denotes the coefficient of g in the expansion of a E A in 
terms of the basis B. 

+ 
(2.8) Theorem. If A is a finite dimensional algebra such that the regular representation A has nondegen- 
erate trace then every representation V of A is completely decomposable. 

Proof. Let t r  denote the trace of the regular representation. Let B be a basis of A and for each g E B let 
g* denote the element of the dual basis to B with respect to  the trace t r  such that tr(gg*) = 1. 

Let V be a representation of A of dimension d and let Vl be an irreducible invariant subspace of V. Let 
P: V -+ V be an arbitrary projection of V onto Vl. Define 

Then, by (2.6), we know that 

V(a) P1 = PI V (a). 

Since VI is an A-invariant subspace, PI V C Vl. Since Vl is irreducible P lV is either 0 or Vl. 



Let e = CgE 99*. If a E A then 

This shows that tr(a(e - 1))  = 0 for all a E A. Since t r  is nondegenerate we have that 

e = C gg* = 1. 
SEE 

Now let v  E Vl .  Then since V(g')v E Vl we have 

So PIV = Vl and PIPIV = P I V .  
Let Pi = Id - Pl and let Vz = PiV. Notice that V(a)Pi  = PiV(a) f ~ r  all a E A. So V2 is an A-invariant 

subspace of V .  Since, for every v  E V ,  v = Plv + ( Id  - Pi)v = Plv + Piv, we have V = Pl V  + PIV. 
If v  E P I V n  PjV then v  = Plv = P1P:v = P,(Id - P[)v = 0. So P 1 V n  PjV = 0. Thus we see that 
v = P1V @ PjV. 

If P{V is irreducible then we are done. If not apply the same process again with P:V in place of V .  Since 
V is finite dimensional continuing this process will eventually produce a decomposition of V into irreducible 
representations. 

Now let A be a finite dimensional algebra such that the trace t r  of the regular representation 3 of A 
is nondegenerate. Let B be a basis of A and for each g E B let g' denote the element of the dual basis to 
B with respect to the trace tr  such that tr(ggq) = 1. Let V be a faithful representation of A. By (2.8) we 
know that V can be completely decomposed into irreducible representations. Choose a maximal set { W A )  
of nonisonorphic irreducible representations appearing in the decomposition of V .  Let d~  = dim Wx and 
define MAC) = e x M d , ( C ) .  We view MAC) as an algebra of block diagonal matrices with one dx x d x  
block for each A. V ( A )  % e A W A ( A )  is a subalgebra of Md<C) in a natural way. Let EG denote the d  x d  
matrix with 1 in the (i, j) entry of the Ath block and 0 everywhere else and let Ix be the matrix which is 
the identity on the Ath block and 0 everywhere else. 

For each g E B let ~ , $ ( g * )  denote the (i, j) entry of the matrix Wx(g*). Then 

kth row of ( [ \ ; 1 ( g * ) ~ ~ ( g ) )  = j th  row of ( ~ x ( g * ) ~ ? ~ ~ x ( ~ ) ) .  

kth row of (x iV';(ga)w~(g))  = j th  row of (x W A ( ~ * ) E $ W A ( S ) )  
4E B 9 

= j th  row of (cIx6;k). 



So the ith row of C, wj?,(g*)wA(g) is all zeros except for c  in the j t h  spot and all other rows of 

CgEe w;(g*)wx(g) are zero. So 

C ~;:!?*)w,(s) = cEi: 
9 

for some c  EC. We can determine c by setting i = k t o  get 

Since the trace of the regular representation was used to construct the g* we have, (2.9) ,  that Cg gg* = 1 ,  
giving 

t r ( w ~ ( C  g g * ) ~ ; )  = t r ( w x ( 1 ) E i )  
9 

= tr(1, E:) 
= 1.  

So cdx = 1 and we can write (2.11) as 

Since we have expressed each E$ as a linear combination of basis elements of V ( A )  we have that E; E V ( A )  
for every i and j. But the E$ form a basis of Md<C). So MAC) C V ( A ) .  Then A Z V ( A )  = MAC). We 
have proved the following theorem. 

(2.12)  Theorem. (Artin-Wedderburn) If A is a finite dimensional algebra such that the trace of the regular 
representation of A is nondegenerate, then, for some set of positive integers dx, 

Examples 

1. Let A = { a i )  and B = {b i )  be two b w s  of A and let A* = { a f )  and B* = {b f )  be the associated dual bases 
with respect to a nondegenerate trace con A. Then 

bi = C sij aj , and 

for some constants sjj and t i j .  Then 



In matrix notation this S ~ S  that the matrices S = ((sijJJ and 7' = (ItijI( are such that 

Then, in the eetting of Proposition (2.6), 

This shows that the matrix [q of Proposition (2.6) is independent of the choice of basis. 

2. Let A be the algebra of elements of the form cl + cze, c l ,  c;! EC, where e2 = 0. A is commutative and <defined by 
+ 

qcl  +cze) = cl +cz is a nondegenerate trace on A. The regular representation A of A is not completely decomposable. 
+ 

The subspace Q: ? C A is invariant and its complementary subspace Q: is not. The trace of the regular representation 
is given explicitly by tr(1) = 2 and tr(e) = 0. tr is degenerate. There is no matrix representation of A that has trace 
given by < 
3. Suppose that G ie a finite group a d  that A =CG is its goup algebra. Then the group elements g E G form a basis 
of A. So, using (2.7), the trace of the regular representation ccm be expressed in the form 

where 1 denotes the identity in G and a I g  denotes the coefficient of g in a. Since tr(g-lg) = (GI # 0 for each g E G, 
tr is nondegenerate. If we set q a )  = a (1 then ris a trace on A and {g-l)gEG is the dual basis to the basis {gIgEc 
with respect to this trace. 

4. Let ;be the trace of a faithful realization 4 of an algebra A (i.e. for each a E A, q a )  is given by the standard trace 
of +(a,) where 4 is an injective homomorphism 4: A + Md(C)). Let f i  = {a E ~ l q a b )  = 0 for all b E A). is 
an ideal of A. 

Let a E fi. Then tr(ak-'a) = tr(ak) = 0 for d l  k. If A l , .  . . , A d  are the eigenvalues of 4(a) then flak) = 
Xf + + - . + A $  = pk(A) = 0 for dl k > 0, where pt represents the kth power symmetric function Mac]. Since the 
power s.vmmetric functions generate the ring of symmetric functions this means that the elementary symmetric functions 
ek(X) = 0 for k > 0, Mac] p.17, (2.14'). Since the characteristic polynomial of 4(a) can be written in the form 

we get that char+(,)(t) = td. But then the Cayley-Hamilton theorem implies that = 0. Since 4 is injective we 
have that ad = 0. So a is nilpotent. 

Let J be an ideal of nilpotent elements and suppose that a E J. For every element b E A, ba E J and ba is 
nilpotent. This implies that 4(ba) is nilpotent. By noting that a matrix is nilpotent only if in Jordan block form the 
diagonal contains dl zerce we see that qba) = 0. Thus a E a. 

So 4 can be defined as the largest ided of nilpotent elements. Furthermore, since the regular representation of 
A is always faithful fi is equal to the set {a E Altr(ab) = 0 for dl b E A )  where tr is the trace of the regular 
representation of A. 



5. Let be a basis and ;the trace of a faithful realization of an algebra A as in Ex. 3 ,  and let G ( A )  be the (.;ram 
matrix with respect to the basis d and the trace {as given by (2.2) and (2 .3) .  If B is mother basis of A then 

where P is the change of baia matrix from A to B. So the rank of the Gram matrix is independent of the choice of the 
basis A. 

Choose a basis {a l ,  a2,.  . . , a k )  of a (a defined in Ex. 3) and extend this basis to a basis 
{ a l ,  a2,.  . . , ak, bl,  . . . , b,} of A.  The Gram matrix with respect to this basis is of the form 

where G ( B )  denotes the Gram matrix on {b l ,  b 2 , .  . . , b,}. So the rmk of the matrix is certainly less than or 
equal to s. 

Suppose that the rows of G ( B )  rue linearly dependent. Then for some constants c l ,  c2,. . . , c,,  not all zero 

for all 1 5 i 5 s. So i((x cj b,)bi) = 0 ,  for all i. 
j 

This implies that zj cjbj E n. This is a contradiction to the construction of the b j .  So the rows of G ( B )  are linearly 
independent. 

Thus the rank of the G r m  matrix is s or equivalently the corank of the Gram matrix of A is equal to the dimension 
of the radical a. Thus, the trace t r  of the regular representation of A is nondegenerate if and only if fi = (0) .  

6. Let W be an irreducible representation of an arbitrary algebra Aand  let d = dim W .  Denote W ( A )  by A w .  Note 
that representation W is also an irreducible representation of Aw ( W ( a )  = a for d l  a E Aw). 

We show that t r  is nondegenerate on Aw,  i.e. that if a E A w ,  a # 0,  then there exists b E Aw such that . _. 
tr(ba) # 0. Since a is a nonzero matrix there exists some w E W such that aw # 0.  Now Aaw C W is an A-invariant 
subspace of W and not O since aw # 0. Thus Aaw = W .  So there exists some b E Aw such that baw = w .  This 
shows that ba is not nilpotent. So tr(ba) # 0. So tr  is nondegenerate on A w .  This means that Aw = $xMdA ( C )  
for some dx. But since by Schur's lemma Xw = Id(C), where d = dim W ,  we see that W ( A )  = Aw = Md(C). 

--+ 4 

7. Let A be a finite dimensional algebra and let A denote the regular representation of A. The set A is the same as 
+ 

the set A, but we distiguish elements of A by writing 3 € A. 
+ 4 

A linear transformation B of A is in the centralizer (ii9 defined by (1.10)) of A if for every element a E A and 

~ € 2 ,  
B a T  = aB3'. 

+ --+ 
Let B 1 = b . Then 

-* 
B - ~ ? = B ~ I  

+ 
= ab. 

4 

So B acts on -iS* E A by right multiplication by b. C:onversely, it is easy to see that the action of right multiplication 
commutes with the action of left multiplication since 

+ 
for all a ,  b E A, and 2 E A .  So the centralizer algebra of the regular representation is the algebra of matrices 
determined by the action of right multiplication of elements of A. 



Notes  a n d  References 

The approach to the theory of semisimple algebras that is presented in this section and the following 
section follows closely a classical approach to the representation theory of finite groups, see for example [Se] 
or [Ha]. Once one has the analogue of the symmetrization process for finite groups, the only nontrivial step 
in the theory that is not exactly analogous to the theory for finite groups is formula (2.9). 

I discovered this method after reading the sections of [CRl] concerning Frobenius and symmetric alge- 
bras. Frobenius and symmetric algebras were introduced by R. Brauer and C. Nesbitt, [BN] and [Ns]. T. 
Nakayama [Nk] has a version of Theorem (2.6) and R. Brauer [Br] proves analogues of the Schur orthogonal- 
ity relations that are analogous to formula (2.10). Ikeda pk], and Higman [Hg], following work of Gaschiitz 
[Ga], construct "Casimir" type elements similar to those in (2.9) and 83 Ex. 7. In [CR2] $9 Curtis and 
Reiner use a similar approach but with different proofs, communicated to them by R. Kilmoyer, to obtain 
theorems (3.8) and (3.9) for split semisimple algebras (over fields of characteristic 0). N. Wallach has told 
me that essentially the same approach works for finite dimensional Lie algebras. 

This approach is useful for studying semisimple algebras that have distiguished bases. The recent interest 
in quantum deformations is producing a host of examples of semisimple algebras that are not group algebras 
but that do have distinguished bases. Some examples are Hecke algebras associated to root systems, the 
Brauer algebra, and the Birman-Wenzl algebra [BW]. For an approach to the Hecke algebras that is essentially 
an application of the general theory given here see [GU] and [Cr3] 568C. 

I would like to thank Prof. A. Garsia for suggesting that 1 try to  find an analogue of the symmetrization 
process for finite groups for the Brauer algebra. It  was this problem that resulted in my discovery of this 
approach. I would like to thank Prof. C.W. Curtis for his helpful suggestions in locating literature with a 
similar approach. I would also like to thank Prof. Garsia for showing me the proofi of Exs. 4 and 5. 



3. Semisimple algebras 

An algebra A is simple if A Y Md(C).  
Suppose r i s  a trace on Md(C). Then 

q ~ ~ ~ )  = @Eil E ~ , )  

= q~~~ E ~ ~ )  

= 

If a  = JlajjI( E Md(C) then 

So, up to a constant factor there a unique trace function on Md(C) ,  that given by the standard trace on 
matrices. 

Suppose J  is an ideal of Md(C) and that a  = Ilaijl) E J ,  with a # 0 .  So ajj # 0  for some ( i ,  j). Since 
a  E J  and J  is an ideal, 

is an element of J .  Thus J  = Md(C) .  This shows that the only ideals of M d ( C )  are the trivial ones, 0  and ( : 
Md(C).  It is an immediate consequence of $1 Ex. 1  that the center of M d ( C )  is Id(C)  =C Id .  Furthermore, . . 

Id is the unique central idempotent in M d ( C ) .  

(3.1) Proposition. There is a unique irreducible representation of M d ( C )  given by the usual multiplication 
of d  x d matrices on all column vectors of size d. 

Proof. Let V be the d  dimensional vector space of column vectors of size d. The standard basis of V consists 
of the vectors ei = (0,. . . , 0 , 1 , 0 , .  . . , O)' ,  1 5 i  5 d where the 1 appears in the ith spot. Suppose that V' is 
a nonzero invariant subspace of V. Let v  = xi viei, vi E C ,  be a nonzero element of V'. So vi # 0  for some 
1 5 i 5 d. Then ( l / v i ) E j i v  = e,. Since V' is invariant we have that ej E V' for each 1  5 j 5 d .  But since 
the ej are a basis of V this implies that V = V'. So V is an irreducible representation of Md(C).  

Now let W be an arbitrary irreducible representation of A = Md(C) .  There is some vector w E W 
and some a E A such that aw # 0 ,  otherwise W would be the zero representation. If a  = I)aijl( then 
aw = xi aij Eij w # 0  implies that Eij w # 0  for some pair ( i ,  j). The space Md(C)Eij consists of all 
matrices t i a t  are 0  except in the j th  column and is isomorphic to V. The map 

is an isomorphism since both V and W are irreducible. tl 

So the regular representation of Md(C)  decomposes as a direct sum of d copies of the unique irreducible 
representation V of M d ( C ) ,  one copy for each column in Md(C). 

An algebra A is semisimple if 
A @ A E A M ~ ~  (C)i ( 3 . 3 )  

where A is a finite index set. The vector i= ( d x ) ,  X E A of positive integers is called the dimension vector 
of the algebra A. We will use M A C )  as a shorthand notation for the algebra given by the right hand side of 
(3 .3) .  We can view Md<C) as the full algebra of block diagonal matrices where the Xth block is dimension 

(-. 



dx. We denote the matrix having 1 in the ( i ,  j)th position of the Xth block and zeros everywhere else by E,$. 
Denote the matrix which is the identity on the Xth block and 0 everywhere else by IA.  

Any trace on @ x E ~ M d A  (C) is completely determined by a vector <= (tx) of complex numbers such that 
<E:,) = tx  for each X in the finite index set A. The vector $= (tx) is the trace vectorof the trace A trace 
on MAC) is nondegenerate if and only if tx # 0 for all X E A. The only ideals of M,-<C) = @XEhMdA (C) are 
of the form eXEA,MdA(C) where A' E A. The Ix, X E A form a basis of the center of MAC). Every central 
idempotent is a sum of some subset of the IA. There is, up to isomorphism, one irreducible representation 
of exEnMd,(C) for each X E A. It can be given by left multiplication on the space M,~c)E&, for any i, j, 
1 5 i ,  j 5 dx. The decomposition of the regular representation of @x€nMd,(C) into irreducibles is given by 

where WA denotes the irreducible representation corresponding to A. 

Matrix units and characters 

Let A be an algebra and A a finite index set such that A S exeAMdA(C) under an isomorphism 
&:A -+ @xciMd,(C). (Let MdiC) denote the algebra $xMd,(G).) Warning: The isomorphism 4 is not 
unique; nontrivial automorphisms of MAC) do exist, just conjugate by an invertible matrix. zx = 4-'(Ix) 
is an idempotent and an element of the center of A. The zx are the minimal central idempotents of A. They 
are  minimal in the sense that every central idempotent of A is a sum of zx's. These elements are independent 
of the isomorphism 4. 

A set of elements e;j E A, X E A, 1 5 i ,  j 5 dA is a set of rnotriz units of A if 

A complete set of matriz units of A is a set of matrix units which forms a basis of A. Let E; E MAC) denote 
the matrix having 1 in the (i, j ) th position of the Ath block and ze ra  everywhere else. If {e:) is a set of 
matrix units of A, the mapping e$ w E$ determines explicitly an isomorphism A -+ MAC). Conversely, an 
ismorphism 4: A -+ M d C )  determines a set of matrix units e$ = 4-'(E;). Note that the e i  are minimal 
orthogonal idempotents in A. 

Let Wx, A E A denote the irreducible representations A. By (3.1) and (3.2), for each A E A, 

for any i ,  j, 1 5 i, j 5 dx, where the action of A on ~ e b  is given by left multiplication. For each A E A 
denote the character of the irreducible representation Wx by XX and for each X E a and a E A let w$(a) 
denote the ( i ,  j ) th entry of the matrix Wx(a). Note that we can view each Wx(a) as a matrix in Md<C) with 
all but the Xth block 0. 

Let B be an arbitrary basis of A. Let <= (tx),  X E A be a nondegenerate trace on A. For each g E B 
let g* denote the element of the dual basis to B with respect to the trace :such that qgg*) = 1. 

(3.7) Theorem. (Fourier inversion formula) The elements 

form a complete set of matrix units of '1. 

Proof. Let $:A - MAC) be given by 4(a) = exWA(a).  This is an isomorphism. For each X E A and 
l < i , j < d A  let 

e?, = 4 - ' ( ~ $ ) .  



The set B = {e;} forms a basis of A. The dual basis with respect t o  the trace = ( t x )  is the basis 

{(lltx>ejxi)* 

C t~U;: (g*)g  = C t*~A((l l tr)eG)e: ,  
g€B k , l , l ~  

Notice that  
k th  row of ( x  w>(g*) wx(g)) = j t h  row of (x  W X ( ~ * ) E $  ~ x ( g ) ) .  

g€B g € B  

By  $2 Ex. 1 we know tha t  xgEB Wx(g*) E i  WA(g) is independent of the  basis B. 

(3.8) Theorem. 

Proof. 

(3.9) Theorem. 

Proof. 

Examples. 

1. If A is commutative and semisimple then all irreducible representations of A are one dimensional. This L not 
necessarily true for algebraa over fields which are not algebraically closed (since Schur's lemma takes a different form). 

2. If R is a ring with identity and M,,(R) denotes n x n matrices with entries in R, the ideals of Mn(R) are of the 
form Mn(I)  where I is an ideal of R. 

3. If V is a vector space over Q: and V' is the space of Q: valued functions on V then dim V* = dim V .  If B is a basis 
of V then the functions 6 b ,  b E B ,  determined by 

1 ,  i f b = b i ;  
bb(bi) = { 0 ,  otherwise; 



for bi E B, form a bask of v'. If A is a semisimple algebra isomorphic to M d @ )  = @XEAMd.\(@), A an index set 
for the irreducible representations WA of A, then 

and the functions W$ (W,$(a) the ( i ,  j) th entry of the matrix Wx(a), a E A) on A form a basis of A'. The W,$ are 

simply the functions 6,: for an appropriate set of matrix units {e:,} of A. This shows that the coordinate functions 

of the irreducible representations are linearly independent. Since XX = xi W i ,  the irreducible characters are are also 
linearly independent. 

4. Let A be a semisimple algebra. Virtual characters are elements of the vector space R(A) consisting of the 6-linear 
span of the irreducible characters of A. We know that.there is a one-to-one correspondence between the minimal central 
idempotents of A and the irreducible characters of A. Since the minimal centrd idempotents of A form a basis of the 
center Z(A) of A, we can define a vector space isomorphism 4: Z(A) -+ R(A) by setting $(%A) = xA f6r each X E A 
and extending linearly to dl of Z(A). 

Given a trace r b e  a nondegenerate trace on A with trace vector (tA) it is more natural to define 4 by setting 
4(zx/tx) = xX. Then, for z E Z(A), 

4(z)(a) = <.a), (3.11) 

since 

4 ( ~ , / t P > ( ~ )  = <z,lt,a) 

= W/t,)z ,a)  
= (l/t,)(t,xp(a)) 
= xp(a). 

( I 
5. If A is a semisimple algebra isomorphic to MA@) = eXEA MdA (C), A tu~ index set for the irreducible representations 
Wx of A, then the regular representation decomposes as 

If matrix units e$ are given by (3.7) then 

tr(ei)  = t r ( d x ~ i )  = dx. 

So the trace of the regular representation of A, tr, is given by the trace vector <= (tx) where tx = dA for each A E A. 

6. Let A be a semisimple algebra and let B* = {g*} be a dud basis to a basis B = {g) of A with respect to the trace 
of the regular representation of A. \Ve can define an inner product on the space R(A) of virtual charactere (Ex. 4) of 
A by 

4 x, x' >= C x(s)x'(s'). 
g EB 

The irreducible characters of A rue orthonormal with respect to this inner product. Note that if X,  XI rue the characters 
of representations V and V1 respectively, then, by Ex. 4 and Theorem (3.9), 

< x, x' >= dim H o m ~ ( v ,  V1). 

If XX is the character of the irreducible representation Wx of A then < xX,  x > gives the multiplicity of Wx in the 

(.. -. representation V xi in $1 Ex. 3. 



7. Let A be a semisimple dgebra and <= (tx) be a nondegenerate trace on A. Let B be a basis of A and for each 
g E B let g* denote the element of the dud bmis to B with respect to the trace ;such that qgg*) = 1. For eacll 
a E A define 

La1 = C rag*. 
g€ B 

By $2 Ex. 1 the element [a] is independent of the choice of the basis B. By using irs bmis a set of matrix units e& of 
A we get 

[a] = C ( l ~ e $ a e ;  
i , l , A  

= z,,. 

Thus the [g], g E B ,  span the center of A. 

8. Let G be a finite group and let A =cG.  Let <be the trace on A given by 

where 1 is the identity in G. By Ex. 5 and §2 Ex. 3 the trace vector of cis given by tx = (dx/lG() where d~ is the 
dimension of the irreducible representation of G corresponding to A. 

If h E G, then the element 
[h] = ghg* = 9hg-l 

9 € B  9EB 

is a multiple of the sum of the elements of G that are conjugate to h. Let A be an index set for the coqjugocy clnsses of 
G and; for each )r E A, let CA denote the sum of the elements in the conjugacy class indexed by A. The Cx are linearly 
independent elements of CG. Furthermore, by Ex. 7 they span the center of CG. Thus h must also be an index set 
for the irreducible representations of G. So we see that the irreducible representations of the goup algebra of a finite 
group are indexed by conjugacy classes. ' 

9. Let G be a finite group. Let Cx denote the conjugacy classes of G. Note that since 

for m y  representation V of G and all g ,  h E G, characters of G are constrrnt on conjugacy classes. TJsing Theorem 

(3.81, 
Iclbru = C ~Y(r)x ' (g-~)  



where p' is such that cp~ is the conjugacy class which contains the inverses of the elements in C,. Define matrices 
I - 
; = ( ( Z A P ( (  and E' = Ilzipll by Z x p  = x X ( p )  and ELp = (Cp1xA(p1) .  By Ex. 8 these matrices are square. In matrix 
notation the above is 

SB'~  = ( G I I .  

But then we also have that Z"Z = I G I I ,  or equivalently that 

10. This example gives a generalization of the previous example. Let A be a semisimple algebra and suppcse that B is 
a basis of A and that there is a partition of B into c l ~ s e s  such that if b and b' f B are in the same c l s s  then for every 
A E A, 

x X ( b )  = X X ( b l ) .  (3 .14)  

The fact that the characters nre linearly independent implies that the number of clysea must be the same as the number 
of irreducible characters X X .  Thus we can index the c l s e s  of B by the elements of A. Assume that we have fixed such 
a correspondence and denote the classes of B by C A ,  A E A. 

Let r b e  a nondegenerate trace on A and let G be the Gram matrix (2.3) with respect to the buis B and the trace 
t f  If g E B, let g* denote the element of the dual basis to B, with respect to the trace t f  such that q g g * )  = 1. Let 
G-I = C = ((cgg1(l and recall (2.4) that g* = xglEB cgg~g1.  Then 

Collecting g,  g' E B by c l s s  gives 

where x X ( p )  denotes the value of the character X X  at elements of the c l m  C, .  Now define a matrix = ( ( E p T ( (  with 
entries 

and let S = ( ( E x , ( (  and Z' = I ( Z ~ , I l  be matrices given by E x ,  = x X ( p )  and Z i p  = ( t ~ / d ~ ) x ' ( p ) .  Note that all of 
these matrices are square. Then the above gives that 



or equivalently that 

Notes  and References 

The Fourier Inversion formula for representations of finite groups appears in [Se] p. 49. I must thank 
Prof. A. Garsia for suggesting the problem of finding a generalization. I know of no references giving a 
similar generalization. Theorems (3.7) and (3.8) are due to R. Kilrnoyer and appear in [CR2] (9.17) and 
(9.19). Ex. 3 is the Frobenius-Schur theorem. Ex. 9 is known as the second orthogonality relation for 
characters of finite groups (the first orthogonality relation being (3.8)), see [CR2] (9.26) or [Se] Chap. 2, 
Prop. 7. The generalization given in Ex. 10 is new as far as I know. [Rl] shows that the Brauer algebra is 
an example of semsimple algebra that is not a group algebra with a natural basis that can be partitioned 
into classes such that (3.13) holds. 



4. Double  central izer  nonsense 

Tensor products 

If P and Q are two matrices with entries from C,  then the tensor product of P and Q is the matrix 

where pij denotes the ( i ,  j)th entry in P. If V and W are two vector spaces with bases Bv = {v;) and 
Bw = {wi) respectively, the tensor product V 63 W is the vector space consisting of the linear span of the 
words viwj. If V is dimension n and W is dimension rn, then V 8 W is dimension nm. In general, for any 
v E'V and w E W,  the word vw can be expressed in terms of the words viw, by using linearity, i.e. for all 
c , d € C ,  vi,vj E BV and wr,wS E Bw, 

(cvi + dvj)wr = cviwr + dvjwr and 

V;(CW, + dw,) = C V ~ W ,  + dviwS. 

Suppose that A and C are two arbitrary algebras. We can define an algebra structure on the vector 
space A @I C (we distinguish the tensor product of algebras from the vector space case by writing (a, c) 
instead of ac  for a word in A 8 C ,  a E A, c E C)  by defining multiplication of elements of A 8 C by 

for all a l ,  a2 E A and cl , c2 E C ,  and extending linearly. 
Suppose that V and W are representations of A and C respectively. Define an  action of A 63 C on the 

vector space V 8 W by 
(a, c ) ( ~ w )  = (av)(cw) (4.3) 

I ; for all (a, c) a d  vw, a E A, c E C ,  v E V, w E W.  his defines a representation of A 8 C on V 8 W under 
which the action of (a,  c), a E A, c E C on V 8 W is given by the matrix 

Centralizer of a completely decomposable representation 

Let V be a completely decomposable representation of an algebra A. Assume that 

where the Wi are nonisomorphic irreducible representations of V. This means that we can decompose V 
into irreducible subspaces Vxi, 1 5 A 5 n, 1 5 j 5 mx, so that 

where for each X and j, VAj S Wx. Let dx = dim Wi.  Choosing a basis on each of the VAj gives a basis of V 
which we denote B. Using the basis B of V, the algebra of the representation V is 

(1.1 1) shows that the algebra of matrices that commute with all matrices in V(A), is 



- 
Since, by Schur's Lemma, Wx(A) = Id,(C), we get that 

(4.6) Theorem. If a representation V of an algebra A is completely decomposable in the form 

V 2 en= A 1  w @ m r  x * 

- 
where the Wx are nonisomorphic irreducibles, then the centralizer V(A) of V(A) is semsimple and 

Proof. By a change of basis on V we can put the matrices of (4.5) in the form 

These matrices are of exactly the same form as those in (4.4) except that the dxs and mxs are switched!! - 
(4.7) shows that V(A) 2 M,, (C) as algebras. 

- 
Let B be an algebra with an action on V such that V(B) = V(A). Let B' be the kernel of the action - of 

B on V and let C be the quotient BIB' so that the induced action of C on V is injective. C G V(B) = V(A). 
From (4.5) we see that with respect to the basis B on V the action of an element q E C is given by a ( ; 

where Qx E Mm, (C). This action determines a map 

which, by Theorem (4.6), is an isomorphism. Note that, for each A, the map 

is an irreducible representation of C. 
Let E$ denote the matrix in exMrn, (C) that is 1 in the (i, j)th entry ofthe Xth block and 0 everywhere 

else. Define a set of matrix units e;, , 1 5 X 5 n ,  1 5 i, j 5 mx in C by 

- 
The action of the element e i  on V, is given by the matrix E: @ 16 E V(A). The action of this matrix on 
V is the projection p: V --+ Vxi; 

Vxi = e: V. 



Conversely, if { e ; )  is a set of matrix units of C ,  then, since 1 = e i  as an element of C, we.have a 
decomposition 

Since the action of A on V commutes with the action of C we have that a e i ~  = e ; i ~ ~  c e i ? , ~  for all a E A, 
showing that each of the spaces e h ~  is A-invariant. Since, f 1 Ex. 5, e;V n e: V = 0 unless X = p and i = j, 
the decomposition given above is a direct sum decomposition of V .  This decomposition is a decomposition 
of V into irreducible subspaces under the action of A, 

Define an action of C @ A on V by 

( P ,  a)v = qQV 

where (q, a )  E C @ A and v E V .  Since the actions of C and A on V commute this action is well defined 
and makes V into an C @ A representation. Theorem (4.6) shows that the irreducible representations of C 
are in one to one correspondence with the irreducible representations of A appearing in the decomposition 
of V .  Let CX denote the irreducible representation of C corresponding to A. 

(4.11) Theorem. As C @ A representations, 

Proof. With respect to the basis B of V the action of (q, a )  E C @ A on V is given by the matrix product 

... ... (. , 0 Im 1 @ w1 (a)  0 

... 
0 

&2@Im,  0 Im, @ W ~ ( Q )  - - .  ' 0 
. . .  . . .  . . .  ... ... ... ... 
... ... 0 0 Im, @ Wn(Q) 

which is equal to 
... 91 63 WltQ)  0 0 0 

0 Q2@W2(a) 0 - - -  0 
... ... ... . . . . . .  (4.12) 

... 0 0 0 Q n @ w n ( a )  

Recalling (4.9) we see that the action of each block of (4.12) is by the representation CX @ W A .  CI 

Examples. 

1. Let G be a group and let V and W be two representations of G. Define an action of G on the vector space V €3 W 
by 

gtvw) = (gv)(gw),  

for all g E G, v E V and w E W .  The resulting representation of G is the Kronecker product V 63d W of the 
representations V and W (see also $5 Ex. 4). In matrix form, the representation V @ W is given by setting 

for each g E G. Note, however, that if we extend this action to an action of A =CG on V @ W ,  then for a general 
a E A, a(vw) is not equal to (av)(aw)and (V  Bd W ) ( a )  is not equal to V ( a )  @ W(a). 



2. Theorem (4.6) give8 that there is a one-to-one correspondence between minimal central idempotents zf of C and 
characters XI of irreducible representations of A appearing in the decomposition of I/. Let Let Xt be the irreducible 
characters of C and for each set df = x $ ( l ) ,  so that the dx are the dimensions of the irreducible representations of 
C. The Frobenius map is the map 

F:  Z ( C )  - R(A) 
( l / d f ) z f  - 

Let t :  C 8 A -+c be the trace of the action of C 8 A on the representation V. By taking traces on each side of 
the isomorphism in Theorem (4.11) we have that 

- 
Let t c =  ( t : )  be a nondegenerate trace on C ,  let B be a basis of C and for each g  E B let g* be the element of the 
d u d  basis to B with respect to the trace <c such that &(gg*)  = 1. Then, for my z E Z(C) ,  the center of C ,  

since, using (3.8) and (3.9), 

F(*:/$) = C ( l l $ ) ~ c ( z ; g * ) t ( g ,  .) 
9 

C C P  = C ( t P  Id, ) x c ( g * )  C x a ( g ) x : ( . )  
0 X 

If we apply the inverse F-' of the Frobenius map to (4.13) we get 

Formula (3.13) shows that 
C C C  

F - ' ( t ( n ,  = ( C ( t X  I d ,  12, )[!I]. 
X 

In the case that Zc is the trnce of the regular representation ~ ~ ( t f / d f ) % ?  = 1 md ~ " ( t ( s ,  .)) = [p]. 

Notes and References 

"Double centralizer nonsense" is a term that has been used by R. Stanley in reference to  Theorems (4.6)  
and (4.12). I have chosen to  adopt this term as well. These results are originally due t o  I. Schur [Scl],[Sc2], 
and are often referred t o  as the Double Cornmutant Theorem, or, in the special case of the representation 
~ @ / , d i m V  = n of Gl(n),  Schur-Weyl duality. This was the key concept in Schur's original work on the 
rational representations of Gl(n).  

The  Frobenius map given in Ex. 3 is a generalization of the classical Frobenius map [Mac] $1.7. In a 
paper [Fr] that demonstrates absolute genius, Frobenius used it as a tool for determining the characters of 
the symmetric groups. 



5. Induction and Restriction. 

Let A be a subalgebra of an algebra B. 
Let V be a representation of B. The restriction V if: of V to A to be the representation of A given by the 
action of A on V. Let W be a representation of A. Define B @A W to be all formal linear combinations of 
elements b @ w ,  where b E B, w E W with the relations 

(bl + b2) @ w = ( h @  w )  + (b2 + w), 

b @ (wl + w2) = (b @ wi) + (b @ ~ 2 1 ,  

(ab) @ w = b @ (aw) = a(b @ w), 

for all a E A, b, bl, b2 E B, w, wl, w2 E W and a EC. The induced representation W f is the representation 
of B on B @A W given by the action 

b(b' @ w) = (bb') @ w ,  (5.2) 
for all b , b ' ~  B and w E W. 

(5.3) Proposition. Let A C B C C be such that A is a subalgebra of B and B is a subalgebra of C. Let 
V, Vl, Vz be representations of C and let W, Wl , W2 be representations of C. 

1) (vl (33 V2) 1:= Vl 12 63112 1% - 
2) . (V 12)  1:= v 1: . 
3) ( V ~ ~ ~ V ~ ) ~ ~ = V I T ~ @ V ~ T ; ~ : .  

4) (V t:) 6% v T: - 
Proof. 1) and 2) are trivial consequences of the definition.   he fact that the map 

4: B @A (vl (33 v2) * ( B  @A Vl) @ ( B  @A V2) 
b@(v1,v2) - (b @ v1, b @ v2). 

is a B-module isomorphism gives 3). The map 

and the map 

are both C-module isomorphisms. So 

giving 4). 

Note: Proving that these maps are isomorphis& is not a complete triviality. One must show that they are 
well defined (by showing that they preserve the bilinearity relations (5.1)) and that the inverse maps are 
also well defined. It is helpful to use the fact that the tensor product is a universal object as given in Ex. 1. 

(5.4) Theorem. (F'robenius reciprocity) Let A C B be algebras and Va and W, be irreducible representa- 
tions of A and B respectively. Then 

Horn~(va  T:, W,) H o m ~ ( v a ,  Wp 1;). 

Proof. The map 
Q: H o m ~ ( B c 3 ~  Va,W,) -* Hom~(Va,Wp 42) 

4 I-+ 4' 
where 

4 ' (4  = 4(1@ u), 

is an isomorphism. The inverse map is given by *-I(#) = 4 where 4 is given by 

so that 4 is a B-module homomorphism. 



Branching rules 

Now suppose that A is a subalgebra of B and that both A and B are semisimple. Let A and B be  
index sets for the irreducible representations of A and B respectively. Let VA and W, be the irreducible 
representations of A and B labelled by X E A and p E B respectively. Let gx, EZ be such that 

for each pair (X,p),X E A,p  E B. Frobenius reciprocity implies that 

for each p E B. An equation of the form (5.5) or (5.5') is called a branching rule between A and B. 
One can produce a visual representation of branching rules in the form of a graph. Construct a graph 

with two rows of vertices, the vertices in the first row labelled by the elements of A and the vertices of the 
second row labelled by the elements of B such that the vertex labelled by X E A and the vertex labelled by 
p E B are connected by g ~ ,  edges. This graph is the Bratteli diagram of A C B. 

As an example, the following diagram is the Bratteli diagram of CS2 C CS3, where S,, denotes the 
symmetric group. Recall that the irreducible representations of Sz and S3 are indexed by partitions of 2 and 
of 3 respectively. 

Note that in this example each g ~ ,  is either 0 or 1; h e r e  are no multiple edges. 
Let p E A and consider the representation of A given by left multiplication on the space Aa. Then 

To see this, informally, one notes that since Ap C A we can move Ap across the tensor product to  give, 

B Ap = Bp since 1 E A. More formally we should show that the map 

is well defined and has well defined inverse given by 

Now let px be a minimal idempotent of A such that the action of A by left multiplication on ApA is a 
representation of A isomorphic to the irreducible representation VA of A (3.6). Suppose that 

is a decomposition ($1 Ex. 7) of the minimal idempotent p~ of A into minimal orthogonal idempotents of 
B. Then BpA = B C qj = C Bqi gives a decomposition of Bpx into irreducible representations. So, by (5.6) 
and the branching rule (5.5), for exactly g ~ ,  of the qj we will have that Bqi is isomorphic to the irreducible 
representation W, of B. We can write the decomposition of p~ as 

where each qPiis such that Bq,; is isomorphic to the irreducible representation W, of B. 



Characters of induced representations 

Let V be a representation of A where A is a subalgebra of an algebra B and both A and B are semisimple. 
Let xv  be the character of V and let xvtp be the character of V t:. For each a E A let a* denote the 
element of the dual basis to  A with respect to the trace, t r ,  of the regular representation of A such that 
tr(aa*) = 1. 

Let B be a basis of B and let zB = , ( t f )  be a nondegenerate trace on B. For each b E B let b* denote 
the element of the dual basis to 23 with respect to  the trace TB such that qbb*) = 1. For any element x E B 
we set (as in $3 EX. 7) 

[x] = bz b* 
b€ B 

(5.8) Theorem. 
xvt:(b) = C x v ( a )  < [bl,a' >, 

a 

where < bl, b2 >= TB ( b ~  b2). 

Proof. In keeping with the notations of earlier sections, let A and B be index sets for the irreducible 
representations of A and B respectively and let x;,X E A and x$ ,p  E B denote the irreducible characters 

1 of A and B respectively. Let zf , X E a and zf ,  p E B denote the minimal central idempotents of A and B 
respectively. Let df = x i ( 1 )  so that d~  is the dimension of the irreducible representation of A corresponding 
to X E A. 

We have the following facts: 

1) (Theorem (3.10)) For each X E A, p E B, 

zf = x tfX;(a)a*, and 
a€ A 

respectively. 
2) ($3 Ex. 5) The trace vector ( t f )  of the trace of the regular representation of A is given by t f  = df for 

all X E A. 

3) Suppose that V S eAEA vFmA gives the decomposition of V into irreducible representations of A. Then 

for all a E A. 
4) The branching rule (5.5) for A C B gives that 

for all b E B. 
5) For each X E A let 

be a decomposition of zf into minimal orthogonal idempotents of A. For each X E A and 1 5 i 5 df 
let 



be a decomposition (5.7) of *fi into minimal orthogonal idemPotents of B. qpj denotes a minimal 
idempotent in the minimal ideal of B corresponding to p E 8, i.e., a minimal idempotent such that the 
representation Bq,j of B is isomorphic to the ireeducible representation of B corresponding to p E B. 
Then, by (3.12), 

B E  [&I = ( l l tp  )zp ' 

for each minimal idempotent q5, since for each v E B, = 6,". 
6) Let bl, b2 E B. Using the trace property, 

Now, define 

Then, using I), 2) and 3), 

and, by 5), 1) and 4), 

Combining these and using 6) we get 

as desired. 



Centralizers 

Let A  be a subalgebra of an algebra B ,  and let V  be a representation of B. Let 2 and B be the 
centralizers of V ( A )  and V ( B )  respectively. Then B is a subalgebra of 2; A c B and 2 > B. 
(5.9) Theorem. Suppose that 

W, I:= C s,*v*, 

are the branching rules for A  C B and B C 2 respectively. Then for all A, p 

Proof. We know, Theorem (4.11), that,  as A @IT representations, 

and as B 8 B representations, 
v 2 @,w, 8W#, 

where vX,VA, W,,, and W, are irreducible representations of A,Z, B,  and respectively. 
A is a subalgebra of both A 8 and B @ g. We have that as A @ B representations 

On the other hand as A @ B representations 

Examples. 

1. Let A ,  B and C be vector spaces. ,2 map f : A  x B -. C is bilinear if 

f (a1 + a2, b) = f ( a i ,  b) + f ( 0 2 ,  b), 

f ( a , b l +  b2) = f ( a , b l )  + f(a,b2),  

f ( a a ,  b) = f ( a ,  ab)  = a f  (a ,  b),  

for all a ,  a l l  a2 E A, b, bl ,  b2 E B ,  a EC. 
The tensor product is given by a vector space A €3 B  and a map i: A x B -+ A 8 B such that for every bilinear 

map f :  A X B  -+ C there exists a linear map f: A  8 B -+ C such that the following diagram cornmutea. 

A x B  
\ f  

li C 
/"r  

A O B  

One constructs the tensor product A  6 B as the vector space of elements a  €4 b, a  E A, b  E B, with relations 

(a1 + a2) @ b = a1 8 b + a2 €3 b, 

a @ ( b l  +b2) = a @ b l , + a @ b 2 ,  

(aa) @ b  = a  @ ( a b )  = & ( a @  b), 



for d l  a ,  a l ,  a2 E A ,  b,bi ,  b~ E B and cu EC. The map i :  A X B + A €3 B is given by i(a,  b) = a @ b. [Jsing the 
above universal mapping property one gets easily that the tensor product is unique in the sense that any two tensor 
products of A and B are isomorphic. 

If R is an algebra and A is a right R-module (a vector space that affords an antirepresentation of R) and B a left 
R-module then one forms the vector space A @R B as above except that we require a bilinear map f :  A x B -+ C to 

satis$ the additional condition 

f (a?, b) = f (a, rb) 

for all r E R. Then the tensor product A @R B is a vector space that satisfies the universal mapping property glvell 
above. To construct A € 3 ~  B one a g i n  uses the vector space of elements a €3 b, a E A, b E B ,  with the relations above 
and the additional relation 

a r @ b = a @ r b ,  

for all r E R. 
2. Let A C B be semisimple algebras such that A is a subalgebra of B. Let A and B be index sets for the 

irreducible representations of A and B respectively, and suppase that if;), p E A, is a complete set of matrix units 
of A. 

(5.10) Theorem. [Bt] There exists a complete set of .matrix units {e:*), X E B, of B that is a refinement of the 
f: in the sense that for each /r E A and each i, 

for some set of e:r. 

Proof. Suppose that B S @x,-BMd,(C). Let z f  be the minimal central idempotent of B such that Ix = B z ~  is the 
,i 

minimal ideal corresponding to the A blolk of matrices in @xMd, (C). .. , 

For each p E A and each i decompose f$ into minimal orthogonal idernpotents of B ($1 Ex. 7 ) ,  f$ = Cpj. 
Label each pj appearing in this sum by the element A E B which indexes the minimal idenl Ix = Bpj B of B .  Then 

Now, 

If A # /r then the space p; Bp? = p ? ~ ( z f $ )  = p ? z : ~ p ;  = 0 for d l  i, j. Since p? = p? . 1 -p? E p;~xp; and 

p? Bpipf  Bp? = p ? ~ x p ?  # 0, we know that p? BP; is not zero for any 1 5 i, j 5 d x .  Futhermore, since the dimension 
o f  B is Ex 4 each of the spaces p? BP; is one dimensional. 

For each p? define e i  = p?. For each and each 1 5 i < j 5 dx let e$ be some element of BP;. Then choose 

eiXi E p ; ~ p ?  such that = e;. This defines a complete set of matrix units of B.  O 

3. Let G be a finite group and let H be a subgroup of G. Let R = {gi) be a set of representatives for the left cosets 
g H  of H in G. The action of G on the cosets of H in G by left multiplication defines a representation TH of G. This 
representation is a permutation ~ p T e ~ e n t a t i 0 n  of G .  Let g E G. The entries ~ ~ ( 9 ) ~ ' ~  of the matrix sH(g) are given 
by R H ( ~ ) ~ J ~  = bilk where k is such that ggi E gkH. 

Let V be a representation of H .  Let B = {vj) be a bmis of V .  Then the elements g @ vj where g E G ,  vj  E B 
span CG BCHV. The fourth relation in (6.1) gives that the set {gi €3 vj), gi E R ,  vj  E B forms a basis of 
CG @QIHV. 



Let g E G and suppcae that ggi = gkh, where h E H and gk E R. Then 

Then 

Since characters are constant on conjugacy climes we have that 

= (1IIHl) C xv(a), 
a € H  
a  EC, 

where Cg denotes the conjugacy class of g .  This is an alternate proof of Theorem (5.8) for the special case of inducing 
from a subgroup H of a group G to the goup G. 

4. Define C G  @d C G  to be the subalgebra of the algebra C G  8  CG consisting of the span of the elements g @ 9 ,  
g E G. Then C G S C G  8d C G  as algebras. 

Let Vl and V2 be representations of G. Then the restriction of the C G  @ CG representation V = Vl@ v2 to the 
algebra CG 8; CG is the Kronecker product ($4 Ex.1) 

of Vl and V2. Since C G Z C G  @d C G  we can view Vl @a V2 as a representation of G. 
Let VA and Vp be irreducible representations of G Such that VA @ vp appears as an irreducible component of the 

GG 8 C G  representation V1 @ V2. The decomposition of the Kronecker product 

into irreducible representations V, of G is given by the branching rule for CG 8  CG>CG @a CG. Let C1.and Cz be 
the centralizers of the representations Vl and l/z respectively. Let C be the centralizer of the C G  €3 CG representation 
V = Vl @ Vz. Applying Theorem (5.9) to V where A =CG 8  C G  and B =CG 8 d  CGS G shows that the gip  are 
also given by the branching rule for C1 @ C2 C C. 

Notes  and References 

The  main result, Theorem (5 .8) ,  of this section is a generalization of the  formula for the induced character 
for finite groups, see [Se] $7.2. I have been unable to  find any similar result in previous literature. 
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