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Abstract

In this paper we give Monk rules for Macdonald polynomials which are analogous to the Monk rules
for Schubert polynomials. These formulas are similar to the formulas given by Baratta [Ba08], but
our method of derivation is to use Cherednik’s interwiners. Deriving Monk rules by this technique
addresses the relationship between the work of Baratta and the product formulas of Yip [Yil0].
Specializations of the Monk formula’s at ¢ = 0 and/or ¢ = 0 provide Monk rules for Iwahori-
spherical polynomials and for finite and affine key polynomials.
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0 Introduction

In this paper, we use the term electronic Macdonald polynomials for what are commonly called ‘non-
symmetric’ Macdonald polynomials in the literature (see [CR22] for motivation for this terminol-
ogy). The (type GL,) electronic Macdonald polynomials {E,, | u € Z"} form a C-basis for the ring
(C[xfl, ..., . The goal of this paper is to give Monk type rules for the products

z;E, and (X1 4+ +x5)E, and Ee,Ey,

-1

’ _|_...+x;1)EM and E—ajE;u

z; 'B, and (x

expanded in terms of electronic Macdonald polynomials (here e; = (0,...,0,1,0,...,0) is the n-tuple
with 1 in the jth entry and all other entries 0). We derive our formulas by viewing multiplication by
x;, multiplication by (z1+---+x;), multiplication by E. etc. as operators on the ring (C[$it, =
Expanding a product like x;E,, in terms of electronic Macdonald polynomials is equivalent to writing
the operator of multiplication by x; in terms of intertwiners and Cherednik-Dunkl operators. The
expression of the operator x; in terms of intertwiners and Cherednik-Dunkl operators can be viewed
as a universal formula for multiplication by z; in the basis of electronic Macdonald polynomials. These
universal formulas are given in Theorem 2.1

To obtain the explicit expansions of the products above it is then necessary to (carefully) “evaluate”
the universal formula at . These explicit expansions of the products are given in Theorem [B.11

Lettinge; = x1+-+-+z,and e, = 1 -+ - a:n(acl_1+- --+x;1) be the first and (n—1)st elementary
symmetric functions, Baratta [Ba0O8, Prop. 7, Prop. 8] gives formulas for

z;E,, erlb, and en—1E,

expanded in terms of electronic Macdonald polynomials. Baratta indicates that the formula for x;E,
also appears in Lascoux [La08]. The formulas of Baratta must be the same as ours, although unwinding
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and comparing the notations is not immediate (at least for us). In [BalO] Baratta computes the
products e, E,, where e, denotes the rth elementary symmetric function. It might be possible to give
alternate derivations of the products e, E,, for general r using the methods of this paper.

Baratta’s approach is similar to that of Lascoux, using the interpolation Macdonald polynomials
and results of Knop and Sahi [Kn96] and [Sa96]. Our approach uses the intertwiners and their
relation with the Cherednik-Dunkl operators. Computing these formulas via intertwiners addresses
the relationship between the formulas of Baratta and the methods of Yip [Yil0], who gives some
related expansions, but in an alcove walk form.

The motivation for the term “Monk rules” comes from Schubert calculus. In Schubert calculus,
Monk’s rules for the Schubert polynomials &,, are

;6 = ( Z Gwsij) - < Z 6103ji> and Ss,. 116w = Z Gwsij‘

1<i<y j<i<n i<r<j

Cwsg )= Ew) +1 O(ws;)=(w)+1 f(ws;)=(w)+1
(here w is a permutation in the symmetric group S, and s;; denotes the transposition which switches
i and j). These rules are proved in [Mac91l, (4.15),(4.15"),(4.15")]. A compendium of similar formulas
for type GL, Grothendieck polynomials is given in [LS04, §1,2, §1.3]. Though the analogies are
tantalizing, we have not, in any generality, made a concrete connection between our ‘Monk formulas’
for Macdonald poylnomials and the formulas which appear in Schubert calculus. Part (c) of Corollary
[4.4] provides a different formulation and proof of [AQ19, Theorem 3.3.6]. Other formulas related to
Corollary 4] appear in Assaf [As21] and Gibson [Gib19] who, respectively, use the combinatorics of
Kohnert diagrams and monomial crystals.

Acknowledgements. We are very grateful to Zajj Daugherty for tikzing the picture in (3.2)).

1 Macdonald polynomials

Let n € Z~¢. The (Laurent) polynomial ring (C[xl ..., -1 has basis
{2t | pez}, where ot =z xtn for p = (u1,...,un) € Z".
The symmetric group S,, acts on (C[xl Y ,azfl] by permuting the variables x1, ..., x,. The symmetric

group S, acts on Z" by permuting the positions of the entries. The two actions are related by
wm“—xw“ for w € S, and p € Z".

Let g, t2 € CX. For j € {1,...,n} let X; be the operator on (C[xl ..., -1 given by multiplication
by z;. For i e {1,...,n — 1} let s; € S be the transposition which switches ¢ and ¢ + 1. For
JjeA{l,...,n} let y; be the operator on (C[a:l 1 ..., zF!] which replaces each occurrence of x; with
g lz;. In formulas if feCleft,... =] then

(X;if) (@1, .. zn) =25 f(21,...,2p),
(Sif)(xlu o 7‘Tn) = f(xh oy Li—1y Lj4 1, Ly L1y - - - 7xn)7 (11)
(yjf)(xlv s 7$n) = f(:Eb sy Lj—1, q_1$j7xj+17 s 7xn)-
Define operators T1,...,T,_1, Tr and T, on (C[a:l Lz by

1-— txi_lxiﬂ

Ty=—t72+1t3(1+s) Ty = 8180 $p1yn, TV =XiT1 - Tp1. (1.2

1—a; ' wi
The Cherednik-Dunkl operators are
Vi=TpTho1-Ti, Yo=TrWTTY Ya=T,"WTyt, .., Y, =T, Y, 1T (1.3)
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Given p € Z" let v, € S, be the minimal length permutation which rearranges p into weakly
increasing order. Explicitly, the permutation v, is given by

vu(r)y=1+#{" e{l,....r =1} | pw <} + #{ e {r+1,... 0} | o < pr}. (1.4)

By definition, the electronic Macdonald polynomials E, are the simultaneous eigenvectors for the
action of the Cherednik-Dunkl operators,

YiE, = g *it Ot (1.5)
The “evaluate at y” homomorphism ev,: ClY{F, ..., Yk — C is given by
evi(Y;) = q—ﬂit—(vu(i)—l)‘i'%("—l) (1.6)

(so that evz specializes Y; to the value q_“it_(”“(i)_l)Jr%("_l)). Extend evz to those elements of the field
C(Y1,...,Y,) for which the specialized denominator does not vanish. By (L3, if f(Y) € C(Y1,...,Y,)
and ev},(f) is defined then

fY)E, = eVZ(f(Y))Eu- (1.7)
The interwiners are
v _ o v 72 (1-1) .
=T, and 7,°"=T;+ forie{1,...,n—1}. (1.8)

1-Y Vi

Using the definition of 7/ and the relation T; — T, ' = tz — t_%,

T =T+ [ =T+ f (1.9)
where )
1 -1 -1
t72(1—¢ t72(1 —t)Y;Y.
where fif = L_i and f = ( ) _21] , (1.10)
1=V 1- Yy,

for i,j € {1,...,n} with i # j. The following key relations are proved (for example) in [GR21], Prop.
5.5],

Vi) =q¢ 7YY, and Yty =7'Y;; foric{2,...,n}, and (1.11)

Yt =1V, Yot =1"Y;, and Y1) = 7Y, (1.12)

forie{l,...,n—1}and k € {1,...,n} with k & {i,7 + 1}.
The following Proposition gives an explicit expression for E,, as a sequence of intertwiners acting
on the polynomial 1.
Proposition 1.1. [GR21| Proposition 5.7 and Proposition 2.2(a)]
(a) Let jp= (p1,...,pn) € Z%, and write (r,c) € pif r € {1,...,n} andc € {1,...,u.}. For (r,c) € p
define -

uy(roe) =#{" e{l,....r =1} | pp <c<pt+#{ e {r+1,....n} | pw <c—1<p}.
Then
1,0 —1 noHr
Eﬂ = t_EZ(UM )<H H(T’;/M(T,C) T 72\/71\/77\r/)) -1

r=1c=1

where the product is taken in order defined by (r1,c1) < (re,c2) if 1 < co, and (r1,¢) < (re,c) if
ry <ro.
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(b) If w= (p1,...,pn) €Z" has a negative entry then
Ey= (1 20) " By 4m,....ntm)> where —m is the most negative entry of .

Proposition 1.2. Fori € {1,...,n} lete; = (0,...,0,1,0,...,0) € Z™ with 1 in the ith entry and all
other entries 0. Then

(11—t

&3
I

i + (im1+---+x1) and

€ (1 _ qtn—i-i-l)
-1 1t 1 “1
E ¢ = +<1_qti>(xi+1+’”+37n ).
Proof. Since v_.,,, = s1---s; then
}/;;_1}/;;+1E—€i+1 — qotv75i+1 (i)qlt_v*EiJrl (i+1)E—E¢+1 — qti+1t_1E—gi+l — qtiE_gi+1

The base case is E_., = ;' and the induction step is

(1—-1)

1 1
E . =tir'E_. = <t§T. NI )
> ) Ei+1 ? 1— }/7:—1}/7;—"_1

1 (I—=1)\, _ 1—t _ 3
= (i1 ~)(%+11+(m)(%ﬁﬁ”-ﬂnl)

_ .1 1_t -1 1—t 1_t . .
=z, +<1_qti)xi+l+<1—qti+1><t+1_qti>($i+2+"'+xn )

1—1¢
—a7t () e+ ),

The proof of the first statement is similar (see [GR21) Prop. 3.5] for details). O

Remark 1.3. The source of the statistics v,(r) and wu,(r,c). The minimal length permutation
which rearranges p into weakly increasing order is v, = (vu(1),...,v,(n)). The affine Weyl group for
type G L, is the group of n-periodic permutations. If ¢, denotes the n-periodic permutation which is
the translation in p then ¢, = w,v, with €(t,) = ¢(u,) + ¢(v,) and u, has a reduced word

Up = H (Suu(r,c) T 323177)7

(r,c)Ep

where s; € S, is the transposition which switches ¢ and 7 + 1 and 7 is the n-periodic permutation
given by 7(i) =i+ 1. See [GR21, §2 and Prop. 2.2(a)]. O
2 Operator expansions

Let j e {l,...,n} and let C C {1,...,n}. Writing C = {aq,...,a,} with a1 < --- < a,, define

gmm=n/2 Ly )

feY) = 7_( PE— (2.1)
1—qY,, Yol 1;[1 1— Y, Yol
Then define
0, if j & C,
Fo;(Y)=<¢1- qYalYajnl, if j=a,and p=1, (2.2)
YalYa;1 — YalYa;L, if j =a,and p # 1,

4
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0, lfj < aj,
Acj(Y) = Yo, Yo ! = qYa, Y, L, ifay <5 < app, (2.3)
(1—q)Y, Y, L, if j > am,
0, ifj¢cC,
Do (Y)=¢1—qYe, Y, L, if j = a, and p =m, (2.4)
Ya1Ya;1 - Ya1Ya;}17 if j = ap and p 7& m,
0, if § > am,
Ve (V) =Y, Yol —qY, Vb ifa,q <j<ap, (2.5)
( )Yal Yamla lf] < ay,
and Ly
Be;(Y) = Fe,(Y) + WACJ(Y) and
(2.6)
1—1t
Write the complement of C' in {1,...n} as
C°={b1,...,bp—m} with b < -+ <b. <j<bry1 <+ <bpom,
and define
TC,_] = TgiTlX-,l 7-817-7\(7-8277”_1 “'Tg,/r+1_1 and
(2.7)

PCG =Ty rm1 T (T T Ty
where the 7,7 are as in (LS.
Example 2.1. Examples of fc(Y), Fc;(Y) and 7¢ ;. Let n =11 and C' = {2,5,7,9,10}. Then

1

fC(Y) = lifg—tlo.;.[{fégfs—;f?—?)fg—tloy
t72(1—1)
where fl'; is as in (L.I0). Then
Fop(Y) =1 qYaYy', Fos(Y) =YaYs ' =1, For(Y) =YY, ' = YaYs
Foo(Y) =YaYy ' =YoY; ' Fouo(Y) = YaYyy' — YaYy !,
and
Tor = Te T T T T T8 = T T4 T3 T T Ty since C°=1{1,3,4,6,8,11}.
O
Theorem 2.1. (Monk rules operator form) Let j € {1,...,n}. As in (L)), let X, denote
the operator on (C[a:l s, 2] given by multiplication by x; and let E.; and E_c; be the Macdonald
polynomials of Proposition[1.3, identified with the operators on (C[xl N gwen by multzplzcatzon
by E.; and E_.;, respectively. Use the notations of 2.I)-@2.1). Then, as operators on Clait,... kY,
() Xj= > 7eiFc;(V)feY),
CC{l,....n}
Cn{i}#0
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b) Xi+-+X;= > 710Ac;(V)fe(Y),
CC{l,...,n}
Ccn{l,...,j}#0
(©) B, = > 70 Boi(Y)fe(Y).
cc{1,...n}
cn{1,..., 7} #0
@ X:'= > poPe;(YV)fe(Y),
cc{1,...n}
D140
@ X'+ 4+ X, = > poVe;(V)fe(Y)
cc{1,...n}
cn{j,...,n}#0
) Ee,= > poiQoi(¥)foY).
cCc{1,..., n}
cn{j,...,n}#0

Proof. Since the proof of (a) is longer, let us first make remarks about the proofs of (b)-(f).
(b) This follows from (a) and the observation that Ac; = Fc1 + -+ + Fcj.
(c) By the first identity in Proposition [[.2]

1-1¢ 1-1¢

Ea- =Ty + m(fﬂj—l + o+ xl)a so that BCJ = FC,j + 1— qtn—j-‘rl

J

(d) The proof is analogous to the proof of (a) by expanding
Xj—1 =TTy ()t Tj—_ll
= () = fifg) - = FH )@ T = fon) - (= fi)

- Z (—D)V Rl Y g,

T/ ifie{j,....n—1}andi gL,

70

and
fz'trl,z" ifie{j,....n—1}and i € L,

WL = W Wp—1 With wi:{

T ifie{l,....,j—1}and i ¢ R,

7

frre ifie{l,...,j—1}andie€R,

wWR = w1 wj—1 With wi:{
(3

An example is provided in Example 2.3
(e) This follows from (d) and the observation that Up ; = ®p;+ -+ Pp .
(f) By the second identity in Proposition

1-t¢

1-t¢
1 -1 -1

J 1—qt

(a) As in (L), let X; denote the operator on C[z7,..., x| given by mutliplication by ;.

operator X; can be written in terms of 7/ and Tt,...,T,_1 in the form

V1 -1
Xj =Ty DTN - T,

Acj-1.

The
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(see, for example, [GR21) (5.3) and §5.6 and §5.7]). Then using (L.9]) gives

X;=Tj_1- T17'7¥Tn_—11 R A

J
= (7—}/_1 - ]Tt_j—l) e (7_1\/ - f;:l)T;r/(Tr\L/—l - n_,n—l) e (7—}/ - f]tl—l,j)

= Z (—1)|L|+‘R|wLT7\r/wR, (2.8)

where y .
T; ifie{j—1,...,1} and i &€ L,
wp=wjmyeewy with w; = {f};l,i, if i e 3—1,...,1{ andz’iL, and
R = 1wy with = {Tz\i %fzie {’I’L—l,...,]:} andzi%R,
fire i€ {n—1,...,j} and i € R.
Write
Zzgill’,”iﬁ’, with  n>r>...>r>i>0>...>0, >0,
and use the relations (ILII) and (II2) to move all 7,/ in wy7,/wg to the left so that
(—D)EH Bl 7Y o = e e fL R, (2.9)
where

L¢={ki,...,kj_1—q} with k1 > --- > kj_1_, is the complement of L in {j —1,...,1},
R ={q,...,qn—j—p} with g1 > -+ > g,—j_p is the complement of Rin {n —1,...,j},

vV _ -V V VvV, .V \Y
TorRe = Tk Thyao T Tar ™" " Tgn oy
and
— (N LIF+IR p+ et + - - R -
vaR—( 1) le,egfzz,zg fza,l,zafza,r1+1+1<fr1+1,r2+1fr2+1,r3+1 rb,1+1,rb+1frb+1,j=
where )
+ o t2(1-1)

LK T qY;'Yj_l

(the K in this expression is a formal notational symbol and has no other meaning in this context).
An example of this process of using the relations (LII) and (LI2) to move all the 7Y in wy,7ywr to
the left is given in Example

Let C = {a1,...,am} = {lo,...,01,j,mp + 1,...,r1 + 1} and let C¢ = {by,...,bp_m} be the
complement of C' in {1,...,n} so that

C={a,...,an} with 1< < - <ap<n and jecq,
and C°={by,...,bp—m} with i< <b <j<bpyi- <bp_m.

Then

V _ vV _V V,__V,_V V _ Vv
TLC,RC = Tb’,«Tbrfl cee TblTﬂ' Tbnfm—l e Tbr+1—1 = TC,j’ (210)

and letting p be such that j = a, and rearranging the factors in f7, r gives

_ LI+|R| ¢+ + I T - -
vaR_(_l)‘ - ‘ffmﬁ-i-l—l-Kféafl,@a”'fb,fsffl,bfrb-i-l,j Tb71+177"b+1”'fr2+177"3+1f7"1+177"2+1

= (—1)/EIHIE ot + - - o fT -
at,am+KJ az2a1 ap—-20p—-3JAp—10p—2J Ap410pJ Ap420p+1 Am—10m—2Y Gmam—1

= (—1)/LIHIE p+ oot + - - c fT -
at,am+KJ az2a1 ap—2ap—-3Jap—1ap—2J ap1apJ Ap42ap41 Am—1a0m—2J Amam—1"
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Now use
Y 1 —1
t72(1—t t72(1 -t)YLY,
R Caet) N A Gt R O
1= Y, - Y,
- tr(1-tYY, (i —t)
If p # 1 then
_ LI+|R| ¢+ - + + - - - -
fL,R = (_1)‘ I+ a1,am+KJazar """ Jap_sap_3Jap_1ap—2taptiaptapioapti " Jam—1am—2J amam—1
LI+|R C|-2 -1 —1 1
= (_1)‘ H_l ‘(_1)‘ | (Z,am+K(Ya1Ya2 ;—1(12)”'( ap73Y(1p72 l;/‘;73ap72)(yap72Yap71 (;;72(11,71)
. fF + L fT
apQp+1J ap4+10p42 Am—10m
f+ K m—1
,am~+ —
= (_1)%}/@1}/&;:1( H (j;ai+1>
fapflap i=1
1 m—1
-1 —1
= (—1)Ya1Yap71(1 - Ytlp71Yap ) 1 f[;,t,[lm—l—K( f;;ai+1>
t72(1-1) i=1

_m—1

2 (1—t)ymt "ﬁl 1

t
= (Yalya;1 - Y Y_l )

a1 ap—1 -1 -1
P 1— qYal Yam i1 1-— Yai Yai+1
and if p = 1 then
— (_1\ILIHIR] = - e fT -
fL,R - ( 1) r1+1,r2+1fr2+1,r3+1 rb,1+1,rb+1frb+1,j
_ LI+|R| p— - - -
- (_1)| +E Gy Gm—1 am71am72"'fa3a2 aza1

-1
1 m
_ ot + + o+ + +
- famflamfa'rrLan'mfl o 'fawsfalaz - f+ fal,am—l—K( H faiai+1>
a1,am+K i=1

~ 1 m—1
= (1 - qYa1Yam1) fzj_l,am—i-K( H ;;ai+1>
=1

£73(1—t)

= (1 —ymL ] 1
= (1—qY, Y, ! — ) =Fo;(Y)fe(Y).
(1= tVate,) 1—qY, Yo, <i:11—YaiYaj+11) ci¥)felY)

Inserting these expressions for fr p and the expression for 77, . in ZI0) into (ZJ) and ) gives
the formula in the statement. O

Remark 2.2. The B¢ ; defined in (2Z6]) are given by

7

0, if j < aq,
L— qYalYajnl, if j = aq,
%(1 - qYalya;Ll)v | if a1 < j < ag,

Bes = e Yo Yo 4 YVt Y =y and p £ L
_q?_nfj-i-lyal a:nl + ﬁ a1Ya;E17 if ap—1 < j < a, with 2 <p,
%:Z—nl_;cf)lfal Yol if § > ap.
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Similar expressions can be given for the Q¢ ;. O

Example 2.2. A term in X; for n = 11 and j = 7. This is an example of the computation for the
proof of part (a) of Theorem 2.l In the expansion of

X7 = TeTs Ty T3 Ty Tyry) Tig Ty 1 T YTt
= (16 = f6) -+ (1 = o) (1o = frip0) - (7 = fs2),
the term coming from choosing the — fi_l from the 2nd, 5th, 8th and 9th factors is
( fG 5) 4v (- f3 2)7'17' 7'1v0(—f1_0,9)(—fg_,s;)T?v
D'ty 5 f6 3f3 17'V71\()T¥f1_0 ofor

(—1)*
(— 1) 76 7'4 T3 71 P f5 2f2 11+K7107'7 flO 9.fo; 7
(—1)*

Vv
g ) mo fha S 10+kJ109 97
= (—1) TC,7f5,2f2,10+Kf10,9f9,7=

where C' = {2,5,7,9,10} and C° = {1,3,4,6,8,11} so that

Vv V
7'07 = T6 7'4 7'3 71 711 17'8 1= 76 7'4 T3 7'1 TloT7

Using
fm = I -YsYy !t I —t) gt
I
and ) . .
Lo tT2(1—t) YY1 —t) t2 YoV (1 —t) R
fsa = S -1 == -1 = —YoYy fos
1-YY; VoY -1 1-YaY;
gives
o _ 4 1
(—1)4f§fzf;1o+1<f10,9f9,7 = (—DYa2Yj 1f2JBf2J,r1o+Kf9J,r10f7B = (-1)Ya2Yj 1f (faho4r fo5 15770 f510)
B 57
_ at72(1—¢) 1 1 _
= (-1)Y2Y; P —fo= XY, —YoY; ) fe(Y) = For(Y) fe(Y).
57

O

Example 2.3. An example of a term in Xj_1 for n = 11 and j = 7. This is an example of the
computation for the proof of part (d) of Theorem 2.1l In the expansion of

Xt = IR ToTho () T 0 My A T s Tyt
= (7'7 —f87)"'(710—f11,10)(7'¥) (7'1 —f21)"‘(7'6v—f7_6)

the term coming from choosing the — ffi_l from the 2nd, 5th, 8th and 9th factors is

T%/(_ng,rs)TQ/Tf/o( V)_l(_f2_1)7'2v7'§/(—f5;4)(—f6_,5)7'8/

= (=)' Mo S s () T T T fa Faak s
= (- 1)4 79 1o (77 )™ 1f1 KgT2 73 T f41f54f75
= (=)' 7 mo () 7 f1-K,9f4,1f5,4f7,5
=(-1)

1)*pp 7f1 K9f75f5 4f41
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where D = {1,4,5,7,9} and D® ={2,3,6,8,10,11} so that

V.V .V V\=1_V V.V _ _V _V v Vy—1_V_V_V
PD,7 = T7 Tg 7'10(7'7r) To T3 Tg _T8—1T10—1T11—1(T7r) To T3 Tg

Using f;; = —f;g and f;g = —Yin_lfg gives

ol 1
(_1)4ffr—1<,9f7,5f5,4f4,1 = (_1)f1+—K,9f5Jf7f15f1Jf4 = (_1)—+f1Jr—K,9f1J,r4fZ5f;7f7Jf9

f7o

o ful b = Op (V) fo (V).

= (Y7Yy ' - 1)m

3 Monk rules for Macdonald polynomials

Let kT: Z™ — Z™ be the function which increments the kth coordinate by 1, and let kt: Z" — Z" be
the function which decreases the kth coordinate by 1, so that if u = (1, ..., ty,) then

kTN = kT(Nh o 7,un) = (le s k=1, MK T 171uk+17’ o ,,LLn) and
ki«'u = kﬁL(luh . 7/~Ln) = (le s =15 B — L s - - 7/~Ln)

Let j € {1,...,n} and let C C {1,...,n}. Write C = {aq,...,a;,} with a3 < ag < -+ < a,,. For
w=(f1,...,Mpn) € Z" define

roto(pn) = ’YC'U«In/L, where, in cycle notation, v¢ = (a1,...,am) € Sy. (3.1)

Thus, rotc(p) is the same as pu except that in roto(u) the parts of p indexed by the elements of C
have been rotated and 1 has been added to p,,,

o 1 g pn Bl pg
1 1

Hn- M3

M3 Hn-

Hay Ham, +1

(3.2)

Let rrotc be the inverse operation to rotc so that rroto(rotc(p)) = p and rroto(p) is the same as p
except that in rroto () the parts of p indexed by the elements of C' have been rotated counterclockwise

and 1 has been subtracted from pig, .
For k € {1,...,n} such that k ¢ C define

ta,, +1, if1<Ek<ay, fuajnu(am), if 1<k <a,
b(k) = 4 Hay» if a; <k <ait1, and c(k) = qvu(a), if a; <k < a1, (3.3)
ta,, s if a, < k <mn, Uy (am), if ap, <k <m,

10
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and
fay, — 1, ifam <k <n, va%u(al), if ap, < k <mn,
d(k) = Hay; s if ;1 <k <a;, and e(k)= ’U“(ai), ifa;1 <k < ajy,
Lay s if 1 <k<ay, vu(ar), ifl1<k<a,

Keeping k € {1,...,n} such that k ¢ C define

0, if b(k) = pg,

)1, if b(k‘) > W,
wtu(Co k) = (1 — g =blh) () —cR)+1 (] _ gun=b(k) g () —c(h) -1

(1 — g b o) —e() )2 ;i 0(k) < p,
and
0, if d(k) =
_Jt if d(k) > up.
I‘Wtu(C7 k) - (1 _ quk—d(k)tv#(k)—e(k)+1)(1 . qﬂk_d(k)tvu(k)—e(k)—l) .
(1- q#k_d(k)tvu(k)—E(k‘))2 ,ifd(k) < pg

For k € {1,...,n} such that k € C define

1—1
————————, ifk=q; and i #m,
Wtu(c, k‘) — I‘Wtu(c, k?) — 1— qﬂ i1 M z{ H( it1) H( i) (34)
1 g —im FLgaGam) oatan) LK = -
Then define .
wy (C) = t~# L mznand TTwt, (C k), (3.5)
i=1
and .
rwt,, (C') = #1 [ m=rad TTrwt, (C, k), (3.6)
i=1

Theorem 3.1. (Monk rules for Macdonald polynomials) Let j € {1,...,n} and p € Z%,. Let

E,, denote the electronic Macdonald polynomial indexed by 1 in (C[a:fl, oo xtl. Let
0, ifj&C.
Fu(C’J) =< 1= ql/ffLm_l/ffll""ltvﬂ(am)_vu(al), if j= ap and p =1,

gher Ha toulap)—vu(ar) _ q““p*l_”al tvu(ap71)—vﬂ(a1)’ ifj= ap and p # 1,

0, Zf] <ay,
AM(Ch]) = q“‘lp_'u‘al tvﬂ(ap)_vu(al) — quflm_Mal—"_ltvu(am)_vu(al)’ Zf ap < ] < Qpt1,
(1 — g)gham ~He grulam)=vulan), if j > am,
and 1—¢
Bu(C,j) = Fu(C.J) + WAM(C7j)' (3.7)

11
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Let
0, ifjdC.
%(CJ) ={1- quam—ua1+1tuu(am)—v#(a1)7 if j = a, and p=m,
gher ~Ha toulap)—vu(ar) _ q“ap—l_“‘ll tvu(ap71)—v,t(a1)’ ifj= ap and p # m,
0, if j < a,
\IIH(O’]) — qﬂam_ﬂaptvu(am)—vu(ap) _ qﬂam—ﬂtu+1t”u(aﬂ1)—vu(“1)7 ’lf ap—1 < ] < ap,
(1 — q)q#am—lhn tvll«(a’”l)_vu(a’l)’ Zf] é al)
and 1—1

Let rot,(C) and wt,(C) as in BJ) and @B.H), and let rrot,(C) and rwt,(C) be as defined in (3.

and [B.6). Then
(a)
$jE,u = Z Fu(cyj)Wt,u(C)Erotc(p)a
CcC{1,..., n}
Cn{j}#0
(b)
($1 —+ -4 $j)Eﬂ = Z A“(C,j)th(C)Eth(u),
cCc{1,..., n}
Ccn{l,...,j}#0
(c)
ELBu= Y BuC.i)wtu(C)Erc ),
cC{l,...,n}
Ccn{l,...,j}#0
(d)
5B = Y @u(Crwt(C) P
cc{l,...,n}
Ccn{j}#0
(e)
(xj_l 4+ 4 x;l)EM = Z \I’u(caj)rWtu(C)Errotc(ﬂ)’
cc{l,...,n}
CN{j,...,n}£0
(f)
E_ajEu = Z QM(C,j)rth(C)Erth(“),
cC{l,...,n}
cn{j,...,n}#0

Proof. From [GR21) (4.1) and (4.2)], if p; > 41 then

1
5VE —
t27,’E, = Es,,, and

(1- qm—uiﬂtvu(i)—vu(iﬂ)ﬂ)(1 _ q#i_ﬂi+1tvu(i)_vu(i+1)_1)

1
= V _
t21; Fg,y =1t (1 — qri—tir14ou () —vu(i1))2

From [GR21], (3.5)],
T;(/EM — t%(N—l)—#{iE{l,...,n—l} ‘ Uigﬂn}Ewu'

12
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If the complement of C'in {1,...n} is
C°={b1,...,bp—m} with by < - <b, <j<bry1 < <bpm
then Téj = TI):Tb\Ll . TIXT;/TIXPI_l . TIX+1_1 and using (3.9) and (BI0) gives
2N B, = ity Yt et3n) B,

_ t%(n—l)—#{ﬂi>uam}( H wt,, (C, k))Erotc(
kgC

- (3.11)

An example of the step-by-step computation of Té ;B 1s given in Example 311
Let fc(Y) and Fg;(Y) be as defined in () and (22)), and let ev}, be the evaluation map defined
in (L6]). Since

, , 1—t 1—-t
t vy =1y = gl e (i) —vu(0) ¢ ):
evM(YZYJ ) = gt Higte n and evu<1 — Yin_l 1 — g —higou()—vu

then comparing (3.4]) and (2.1) gives

vl (fo(Y)) =tV T wtu(C k) and  evl(Foy(Y)) = Fu(C,j). (3.12)
keC

Using (L) on the expression in Theorem 21l(a) and inserting ([B12]) and BII]) gives

viEy=X;E,= Y 14 Foi(Y)fo(Y)E,

cc{1,...,n}
jec
= Y reviFe(V)evi(fo(Y))E,
cc{1,...,n}
jec
=L (m—
= Z FM(Cvj)t 2 b ( H Wtu(C, k)>Tg,jEﬂ
cg{_1€,é.,n} kel
J
= Y B (T weu(Cok st #siend ([T wty(€0) #7307 B
cC{l,...,n} keC kgC
jec
= Z FM(Ca j)WtM(C)Erotc(u) .
CcC{1,..., n}
jec

This completes the proof of (a). The proof of the remaining parts is similar, using parts (b)-(f) of
Theorem 211 O

Example 3.1. An example of the computation of TéjEM. Let n=11 and j =7 and

C={2,5,7,9,10}, so that 7'577 = TG\/TZTg/Tl\/T,\T/Tl\/OT%/ = TGVTXT?:/TlvT;r/Tlvl_ng/_l

13
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and C¢={1,3,4,6,8,11}. Then, using (3.9) and (310,

o
<

27 B, = teryterytrryteryrVea Y, tirY |F
Ot = 12T L2 Ty L2T3 12Ty Tr 2T 102 TR 1Ly o, a3, pra, 115 116 5107 148 5140, 1110 5401 1)

1 1 1 1 1
L UVIE SRVIE SVIE SRVIRVIE SRV
= wt,(C,8)t2rgtertargtar E2 791 1 By 1o, a1 i a6 118107 129,110,111

L v, v,i v,1 v v
w M(C’ S)Wt,u(c’ 11)t276 2 Ty 7“L27—3 tle Tr E(/Jl7#27#37#47#57#67#87#77#97#117#10)
= t%(ll_l)_#{”i<”1°}w‘cu(()’, 8)wt,,(C, 11)t%rgt%dt%rgtéﬁvE(w)H
= t5_#{‘“<‘“°}( H wt,, (C, k))t%rgt%ﬁt%@vE(
ke{1,8,11}
= Hmsmol (T wte(Cok) )t iy B
ke{1,3,8,11}

— 5—#{pi<pio} 3V
=1 ' ( wt, (C, k) |tz B 101041113 111,12, 115 116 35107 110,011
ke{1,3,4,8,11}

— 5—#{pi<pio}
=1 ' ( WtM(C’ k) E(Nl7111[)+17M37M47/127M67N 5518517119 ,{411)
ke{1,3,4,6,8,11}

_ t5—#{ui<ﬂ10}( H Wtu(cv k)) Erote (p)-
keCe

ST 542 143 5 b4 545 546 5 48 47 5 19 5411 )

110 F 1,02 103,104 15 546 s 48 5 LT 49,1411 )

H P10+ 1135102 1045 05 546 548 5147 5149 51411 )

The red entries correspond to the parts specified by C' which are rotated to get rot,(C) as in the
picture in (3.2)). O

Example 3.2. An example of the computation of pp jE,. Let n = 11 and j = 7 and
D =1{1,4,5,7,9},  sothat ppr7=7/19To(rY) s 17

and D¢ ={2,3,6,8,10,11}. Then, using (B:QI) and (B.10),

(F1 31025183 51145 45 5146 517 51485149 514101411 )

=rwt, (D, 6)75%7'%/75%73/75%7'1\6(7\/)_115272 tary By iz 3015 117 116 8 094010, 4011)

=rwt, (D, 3)rwt, (D, 6)t27'7 t2 TgvtiTlo( vy~ 1t27'2 Eq.,

= < H rwt, (D, k))t%T%/t%TQ/tiTm
ke{2,3,6)

— t—%(11—1)+#{ui<m}

2,114 5 43 5 U5 LT 146 148 5140 5 410 411 )

1
(74 ) E(m,u47/127/13,;15,umue,us,ummo,ull)

1 1 1
1 v, v,1 v
H rWt#(D’ k)> t277 1279 12 TlOE(lel@7/137#57ll77N67M8yllS)7M107M117llr1 —1)
ke{2,3,6}
1 1
rwt, (D, k:))t?T%/t?Tng(
ke{2,3,6,11}

(1
_ t—5+#{m<u1}< H rwt, (D, k))
(

— t—5+#{ﬂi<ul} B
A 25 03 5 45 5 17 5146 148,149 514105141 — 1,411 )

1
EAY%
t27y E(w JH2 143 5[5 5 1T 5 46 s 148 1149 141 — 1,410,411 )
ke{2,3,6,10,11}
— =5+ {pi<p } H :
=t ’ rWtH(D’ k) E(AM JH2 13 5[5 5 4T 46 149 1148 5141 — L, 1010, 1411 )
ke{2,3,6,8,10,11}

= t—5+#{Mz‘<M1}( H rth(D, ]{;)) ErrotD(u)'
keD¢

14
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4 Specializations of the Monk rule

Specializations of the electronic Macdonald polynomials at ¢ = 0, t = 0, ¢ = 0o and t = oo are of
interest. For example,

(a) E,(0,t) are the Iwahori-spherical functions of [Ion04], also called ¢-deformations of Demazure
characters and Demazure atoms in [AIL6];

(b) E.(q,0) are (level 1 or level 0) affine Demazure characters, or (affine) key polynomials, or non-
symmetric g-Whittaker polynomials (see [Ion01], [MRY19] and [AG20]).

(c) EL(0,0) are Demazure characters or (finite) key polynomials. The finite key polynomials are
special cases of the affine key polynomials.

By appropriately packaging the weights in the Monk formulas in Theorem B.1] it is easy to specialize
these formulas and obtain formulas at ¢ = 0 and ¢ = 0. Proposition does this repackaging for
the product x;F, and the resulting formulas at ¢ = 0 and ¢t = 0 are given in Corollary £4l Similar
formulas could be given for the other products in Theorem B.1] and also for specializations at ¢ = oo
and ¢ = oo (by packaging the coefficients in terms of ¢~ and ¢+~! and then setting ¢~! = 0 and/or
t=1=0).

Let p € Z™ and let j € {1,...,n}. Let C C{1,...,n} and let

C ={ay,a9,...,an} with 1<a1<ay < - <a,<n.
For parsing the following definitions it is useful to note that

Ha; 4 > Ha, if and only if vp(ai—1) > vy(aq), and
tay < Ha,, +1 if and only if vp(ar) < vulam).

Assume j € C and let p € {1,...,m} be given by j = ap. Let

1, ifvu(ar) > vu(am),

S/ = ) e 2, ceey a; > a; +
#{Z { m} | lu i—1 Iu ’L} {0, lf ’Ulu,(al) < ’Uu(am)7

A= Z (Ha;—y — Ha;) + {Nm (e ) Haw = Ho

0, if pra, < fla,, +1,

B'= —{i |pi > pa,, } +{k ¢ C | b(k) < p}

D0 (ulainy) — va(a) + {U“(al) ~ vulam), i v,(a1) > vy (o),

0, if vu(ar) <o

—
S
3

i€{2,..., m}
vp(a;—1)>vpu(as)

15
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Then define
1, ifp#1and pa, > Ha, 4
Sju(C) =S+ N %fp # Land fia, < fiay (4.1)
1, ifp=1and ptg,, +1 < ptg,,
0, if p=1and pg,, +1> pta,,
(uap,l — Has s if p#1and pge, > fa, 1
A;,(C) = A + Hap — Has s %fp # 1 and pq, < fla, 1 (4.2)
—(ttay = (Ma, +1)), if p=1and pa,, +1 = fiay,
0, if p=1and g, +1> g,
vu(ap—1) —vu(ar), ifp#1and v,(ap—1) < vu(ap),
B, ,(C) = B+ vu(ap) — vu(ar), %fp # 1 and v, (ap—1) > vu(ap), (4.3)
—(vu(ar) = vulam)), if p=1and vy(ar) > vu(ap),
0, if p=1and v,(a1) < vu(ap).

Remark 4.1. The statistics S ,(C), A;,(C) and Bj; ,(C) are interesting statistics on p and on the
permutation v,. What properties do these statistics have? How do they change when parts of p are
interchanged?

Proposition 4.2. Let p € Z" and let j € {1,...,n}. Let C C {1,...,n} and let
C={ay,ag,...,an} with 1<a;<ag < - <apy<n.

Assume j € C and letp € {1,...,m} be given by j = ap. Let

ag = o, Y = Ha,, + 1, and Vi = pa;, forie{l,...,m},
and define
1—t
Wikeo = | 11 1 — ghi—ialthvu(a) —va(ais)]
16{1.¥.,m}
i#p

For k & C let b(k) and c(k) be as defined in (B3) and let

(1 — qo=bk) (k) =e(k)+1y (] _ gua—b(k) g (k)=c(k)—1)
(1 — gr—b) (k) =c(k) )2

Wykec = H

kgC
pg >b(k)

Let 8;,(C), Aj(C) and B;,(C) be as defined in 1), (E2) and [A3). The coefficient of Eiot. ()
inx; B, is

(_1)5],#(0) qAJHu‘(C)tBJ”u(C) WM,kECWlhkgC

Proof. By (33),
H wt,, (C, k) = 1#HREC | b(k)<“k}Wp,kQC-
kgC

Let i € {2,...,m} and let k = a;. If v, (a;) < vy(ai—1) then

1—t¢ _q/"“ifl_““itvu(aifl)_vu(ai)(1 _ t)

1— q/’l’“i_/’l’“ifl tvu(ai)—vﬂ(aifl) - 1— q|ﬂai,1—ﬂai|t|vu(ai,1)—vu(ai)|

16
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and if v, (am) < v,(a1) then

1 _qﬂal_(ﬂam +1)tvu(a1)_vu(a7n) _qﬂal_(ﬂam +1)tvu(a1)_vu(a7n)

1— q:ufam+1_/>‘a1 tvu(am)_vu(al) - 1— qual_(uam +1)tvu(al)_vu(am) B 1— q|Mam+1—Ma1|t\vu(am)—vu(a1)| ’

These give that

! . / 1 1
— (— S+#{7' ‘ U’i>l"llm} A"y B .
11 weu(Cik) = (1) @ Wakee T o S onap—untap ]
keC
So
wt, (C) = A m>uam}< H wt, (O, k)) ( H wt, (O, k))
keC keC
! / ! 1

_(_N\S' ALB _

= (-1)% ¢ tP W, kec Wy keo FRp T P o e ey
If p # 1 then

) _quapq_Maltv#(apq)—v#(m)(l _ q\uap—uapfl|t\vu(ap)—vu(ap71)|)7 if fay > fla, 1
FulCo0) = 4 e o o (ay) o (ar) by — a1 |4 v (ap)—vp (@p_1)| : ’
qtor ~Ha1 ¢Vul0p ul(l_q P p—11¢Vulap upl)7 lf,uap<,uap,1'
If p =1 then
F,(C. ) = (1 — gltamF1=Hay|glvu(am)=vular)ly, if pa,, +1> pay s
M( 7j) B _q_(ﬂal_(Mam"l‘l)t—(vu(al)_vu(am)(1 — q‘uam"’_l_ual‘tlvu(a’"l)_vu(al)‘)’ lf lu’flm + 1 < Iual‘
Thus
Fu(C, j)wty(C) = (=1)%w g OeBus W, e oW, pec

and the result now follows from Theorem B.Ia). O

In order to specialize the coeflicients in Proposition at ¢ =0 and t = 0 it is important to know
that the powers of ¢ and t are nonnegative. This is established by the following Proposition.

Proposition 4.3. Let A; ,(C) and B, (C) be as defined in [{2)) and [@3). Then
Aj”u(C) Z 0 and Bj,u(C) Z 0.

Proof. To keep track of signs, write

((tayr — tiay). if p# 1 and g, < o,y < fla,
~(pay = Hap 1), if p#1and pa, > fia, , < fiay,
A;,(C) = A+ (ay = Hay)s %fp # 1 and pg, ; > o, > a1,
—(Kay = Hay); if p#1and pa, , > fa, < far,
—(May — (Hay, + 1)), ifp=1and pg, +1 < gy,
L0, it p=1and pq,, +1> pg,-

Note that A" > 0 since it is a sum of positive integers. Let us consider the cases when the term added
to A’ is negative.

17
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Case fiay; > fta,_; < Ma,: Since the total of the descents of the sequence (tq;; fays - - - Ha,_, ) 1S at least
as large as (fta; — fla,) then

Z (Ha;—y — Ha;) = (Hay — Hay,—y), s that Z (Ha;—y — Ha;) — (Hay — Hap—y) =0

and A4; ,(C) > 0.

Case p # 1 and fia,_, > la, < [la;: Since the total of the descents of the sequence (tiay, fays - - - » Hay)
is at least as large as (tq; — fa,) then

Z (Ha;y — Ha;) = (Hay = Hay) so that Aju(C) = A" = (pay — fa,) = 0
Ha; 1 >Ha;

and A4; ,(C) > 0.

Case p =1 and pg,, +1 > g,: In this case the last term in the definition of A’ cancels with the added
extra term —(tq, — (Ma,, + 1)) so that A; ,(C) is a sum of positive integers and is > 0.
A similar argument shows shows that B; ,(C) > 0. O

Now we are ready to specialize the result of Proposition at g=0and t = 0.
Corollary 4.4. Keep the same notations as in Propostion [{.2.

(a) If t = 0 then z;E, = Z (—1)5“(C)qu’“(C)Erotc(u)-

(b) If ¢ = 0 then

1
o NS (C)4Biu(C) 1 pym—1
yE = 3 (~1)SOBC 1y ( _H - _tvu(ai)_vm,g)Erotcw)'
cCc{y,..., n} Yi=Yi—1
Aj u(C)=0 i#p
(¢) If g=0 and t = 0 then B, = Z (—1)Sjv“(C)Erotc(M).
cCc{1,..., n}

A4, (0)=0,B; ,, (C)=0
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