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Abstract

This article provides the solution to a “Math is broken” problem from the undergraduate
mathematics curriculum as I experienced it when I was a student. The paradox is that
continuous functions are supposed to be the morphisms in the category of topological spaces
and are defined via limits but that limits are not defined in the context of topological spaces.

0 Introduction

0.1 Memories

It was in the second semester of my undergraduate education at MIT that I first met pure
mathematics, open and closed sets, the book “Baby Rudin” [BRu], and Warren Ambrose. The
course was ‘18.100 Mathematical Analysis’. Warren Ambrose had a great effect on me. Somehow
we had a one-to-one conversation where we both confessed that our true love was music and
that we were doing math only as a backup. At the time, I was still far from being a professional
mathematician and he was a famous geometer nearing the end of his career and his life (it was
1984 and he died in 1995 at the age of 81). He told me that he had been a jazz trumpet player
but an accident had made him unable to play properly and so he had pursued mathematics for
a profession. His exams (two midterm exams and a final) were all 24 hour open-book closed-
friend take-home tests: 10 questions, true or false, graded 1 if correct, −1 if incorrect, and 0
if not answered. The average score across the class (about 20 students) was often around 0.
But this mechanism taught you better than any other what proof meant – if you were unable
to provide a proof you believed in then you risked getting −1 for that question. The questions
were always very interesting. I carried these questions around for years until sometime in 2012
when I accidentally left them in a classroom and, when I came back to find them an hour later,
they were gone.

0.2 Math is not broken: continuity and limits

In my first Topology course we covered basic point set topology, open and closed sets again;
and of course we discussed continuous functions. There was no mention of limits or convergence
in this course. Something was wrong. I had always been taught to believe that continuity had
something to do with limits. By that time I was already doing plenty of tutoring and teaching
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of calculus classes myself and I knew that one could define continuity, at least in a calculus
class, by limits. In the Topology course there were no limits and I began to understand that
the primary role of continuous functions was for comparing topological spaces. There was a
major conflict here: limits or topological spaces? Mathematics was broken, and I very seriously
considered quitting and becoming a violin teacher.

Many years later I delved into Bourbaki, learned about filters, and began to understand that
there is a definition of limits for topological spaces and that the world of continuous functions
is, in fact, not broken. Once you get the definitions right, the definitions are easy (and don’t
need to be said with filters), the theorem is (not surprisingly)

Theorem. Let X and Y be topological spaces and let a ∈ X. A function

f : X → Y is continuous at a if and only if lim
x→a

f(x) = f(a).

and the proof is not difficult.

0.3 Notes and references for this exposition

This general material is found in some form in most textbooks on introductory topology or
mathematical analysis such as [Wil] or [BRu]. One comprehensive reference is Bourbaki – see
[Bou, Ch. I §1 nos. 1,2,4] for open sets, closed sets and neighborhoods and [Bou, Ch. I §2 no. 1]
for continuous functions. The formulation of limits not depending on metric space structure is
motivated by [Bou, Ch. I, §6 and 7].

I have made a number of improvements to the standard exposition which I hope will become
more widely used:

(a) the formulation of the definition of neighborhood ;
(b) the presentation of the interior and closure as universal properties;
(c) the formulation of the relation between close points and closure, and between limit points

and closure;
(d) the recognition of sequences as functions and organisation of the different kinds of limits

to highlight the differences and similarities;
(e) the central role of limits in the context of topological spaces;
(f) the use of the term strict metric space;
(g) the formulation of the definition of the metric space topology ;
(h) the accuracy set E, and the explicit form of first countability in metric spaces and its role

in motivating the precise formulation of limits;
(i) the set Z≥`;
(j) The use of the notations Z>0, R>0, R[a,b) etc.;
(k) Proof sketches and proofs without skipping steps;
(l) Math, English and Cartoons.

Further explanation:

(a) Although it is traditional to define topological spaces via axioms for open sets, there are
equivalent (and useful!) definitions of topological spaces by axioms for the closed sets,
and via axioms for neighborhoods. The definition of neighborhood varies from author
to author (for example, Bourbaki [Bou, Ch. I §2 no. 2] and Munkres [Mun, Ch. 2 §17] use
different definitions). I have not chosen to define filters and develop their theory in this
exposition but, to make the theory of limits in topological space go through smoothly, it
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is crucial that the neighborhoods of a point form a filter. Therefore, even when filters are
not mentioned, it is important that the definition of neighborhood is formulated correctly.
This definition of neighborhood is also the right one for an elegant discussion of close
points, interior points, closures and interiors.

(b) The definition of the interior of A is the mathematically precise formulation of “A◦ is the
largest open set contained in A”. The definition of the closure of A is the mathematically
precise formulation of “A is the smallest closed set containing A”. My students are enticed
by the mystery of categories and so I find it very productive to explain that these are
simple and fundamental examples of universal properties. Of course, as with any universal
property, it is important to prove that the universal object exists (in these cases, the
interior and the closure) and is unique. Proposition 2.1, besides being extremely handy
for many upcoming proofs, achieves this goal.

(c) The colloquial similarities between the phrases “close point” and “limit point” are allevi-
ated by careful definition of the mathematical terms, careful usage, and Proposition 2.1
and Theorem 3.3, which make precise the relationship between close points and closed sets
in topological spaces and between limit points and closed sets in metric spaces, respectively.

(d) An important and useful point of view on topological spaces is to view the topological
spaces as a category with the continuous functions as morphisms. My students enjoy
learning that this is one of their first examples of a category and that hook seems to
make them more willing to swallow the axiomatics of the definition of a topology. From
the category point of view the notion of topological space and the notion of continuous
function are “equivalent data”. Theorems 3.1 and 3.3 tightly connect limits of sequences
to closure and continuity and, hence, to the core structure of topological spaces.

(e) When I teach this subject I find it useful to stress that there are different limits: limits of
sequences, limits of functions, and limits of functions with respect to punctured neighbor-
hoods. The similiarity between the definitions (when sequences are presented as functions
from Z>0 to X) provide a good framework for the students (and, myself, as the teacher)
to parse carefully the different parts of the definition and confirm how well this all works
in the context of topological spaces.

(e) The definition of the metric space topology is carefully chosen to achieve several goals
at once: to be the most useful one for doing proofs with metric spaces; to be parallel to
the definition of the uniform space topology on a uniform space (see [Ra1]); to inherently
incorporate the fact that the open balls form a basis of the topology without having
to introduce and study the notion of base of a topology. Proposition 1.1 provides the
equivalence between this definition and another commonly used definition where the open
sets in the metric space topology are defined as unions of open balls.

(f) I choose to replace the terms pseudometric space and metric space, by metric space and
strict metric space, respectively, so that the term metric space allows infinite distances and
allows distinct points to have distance 0. The advantage is that then every uniform space
is a metric space (up to supremums of uniformities) and the metric spaces with uniformly
continuous functions form a category with good properties (products, limits, colimits, etc).
This very slight loosening of definitions allows for the exploitation of powerful category
theoretic tools and structure and elucidates some of the quirks of strict metric spaces (see
[Ra1]).
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(g) A primary property of metric spaces is that they are first countable (have countably
generated neighborhood filters). The introduction of the accuracy set E makes this
property of metric spaces evident. The accuracy set E is countable and defining the metric
space topology by using open balls Bε(a) indexed by the countable set E displays metric
spaces, by their very definition, as first countable topological spaces. The role of this
property becomes vividly evident in the metric space results Theorems 3.3 and 3.4, which
have the first countable space generalizations given in Theorems 3.5 and 3.6 (and exactly
the same proof).

(h) The accuracy set E has a powerful advantage in the classroom. In class, when I introduce
the construction “if ε ∈ E then there exists δ ∈ E such that if d(x, a) < δ then d(f(x), y) <
ε”, I also introduce a scenario of a “limit point business” where the clients come in with
their machine (the function f) and ask us to calibrate their dials with appropriate precision
(the number δ) to achieve a desired number of decimal places of accuracy (the number
ε) for the output of the machine (the output f(x)). My business looks at the client’s
machine and (for a fee proportional to the desired number of decimal places accuracy)
carefully positions the dials to achieve the right output up to the desired accuracy. Using
this conceptual model the students are able to parse the large number of quantifiers in
the logical statement, and setting up the definitions using the set E is helpful both for
motivation and for execution of the proofs involving limits.

Historically, the mathematical community became infatuated by limits, partly because of
the many applications of “calculus” and the ideas of infinitesimals, but also partly because
they weren’t very well understood. The focus on the epsilon-delta definition of limits has
advantages and disadvantages, and the formulation of the definition of limits in topological
spaces provides healthy insights, even in an elementary course.

(i) The accuracy set E has another important role, though it is not visible in this paper. The
paper [Ra1] explains that the theory of metric spaces is completely parallel to the theory of
uniform spaces and that the accuracy set E is naturally replaced by the set E of entourages
(or fatdiagonals) in the theory of uniform spaces.

(j) In the definition of the limit of a sequence in a metric space, “if ε ∈ E then there exists
` ∈ Z>0 such that if n ∈ Z≥` then d(xn, y) < ε, the set Z≥` is the inherent appearance of
the “Fréchet filter” necessary for the definition of the limit of a sequence (see [Bou, Ch I
§6 no. 1 Example 3]). It is pleasant that this fundamental construct has such a simple and
unintrusive way of embedding itself into the structure, without having to introduce any
tangential remarks about the theory of filters. For an exposition of limits in the context
of filters and the relations between filters, nets and sequences see [Ra3].

(j) I have found that the notations Z>0, Q>0, x ∈ R>0, Z[1,n], x ∈ R(a,b] are usually self evident
even to students seeing this material for the first time, and these notations alleviate some
of the confusions that arise when writing N, P, x > 0, 1 ≤ x ≤ n and a < x ≤ b.

(k) On the whole our mathematics textbooks provide very few proofs that don’t skip steps.
A consequence is that my students very often are uncertain what a proof without skipped
steps would be. There are both advantages and disadvantages to each style, and I have
found it most useful to have both styles simultaneously available. For this reason I have
included brief proof skteches in the main text and complete proofs without skipping steps
in the Appendix.
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(l) I have found it very helpful in my teaching, to loudly recognize that the language of
Mathematics is a language of its own different from English (although professional math-
ematicians usually meld the two intricately in actual conversation). This language of
Mathematics is an important tool of the trade as it is what enables us to achieve the stan-
dards of proof and correctness that we need. On the other hand the language of English is
different (as my wife tells me with a glare), and also important to understanding. Finally,
as our handheld devices have made so clear in the 21st century, the power of image is very
important to conceptual facility and understanding by humans. Thus, as I tell my stu-
dents, the Math and the English and the Cartoon are all important at every step and we
should strive to present mathematics in all three languages in tandem, but still beautifully
and elegantly. Historically, cartoons were discouraged from printed mathematics as the
cost of preparing, printing and typsetting figures and pictures was exhorbitant, but this is
less true with modern technology and so we can strive towards a new presentation style
with more cartoons (though it is still important to stress that cartoons are just cartoons
and cannot replace accurate, properly formulated definitions and theorems in the careful
language of Mathematics). I have made a concerted effort to include all three languages
in this article and, at the same time, keep their roles in clear distinction.
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1 Spaces

The point of this section is to introduce topological spaces and metric spaces and to explain how
to make a metric space into a topological space.

1.1 Topological spaces

A topological space is a set X with a specification of the open subsets of X where it is required
that

(a) ∅ is open in X and X is open in X,
(b) Unions of open sets in X are open in X,
(c) Finite intersections of open sets in X are open in X.

In other words, a topology on X is a set T of subsets of X such that

(a) ∅ ∈ T and X ∈ T ,
(b) If S ⊆ T then

(⋃
U∈S U

)
∈ T ,

(c) If ` ∈ Z>0 and U1, U2, . . . , U` ∈ T then U1 ∩ U2 ∩ · · · ∩ U` ∈ T .
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A topological space (X, T ) is a set X with a topology T on X. An open set in X is a set in T .

The four possible topologies on X = {0, 1}.

In a topological space, perhaps even more important than the open sets are the neighbor-
hoods. Let (X, T ) be a topological space. Let x ∈ X. The neighborhood filter of x is

N (x) = {N ⊆ X | there exists U ∈ T such that x ∈ U and U ⊆ N}. (1.1)

A neighborhood of x is a set in N (x).

Neighborhoods of x.

1.2 Metric spaces

A strict metric space is a set X with a function d : X ×X → R≥0 such that

(a) (diagonal condition) If x ∈ X then d(x, x) = 0,
(b) (diagonal condition) If x, y ∈ X and d(x, y) = 0 then x = y,
(c) (symmetry condition) If x, y ∈ X then d(x, y) = d(y, x),
(d) (the triangle inequality) If x, y, z ∈ X then d(x, y) ≤ d(x, z) + d(z, y).

Conditions (a) and (b) are equivalent to d−1(0) = ∆(X), where the diagonal of X is ∆(X) =
{(x, x) | x ∈ X} and d−1(0) = {(x, y) ∈ X ×X | d(x, y) = 0}.
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Distances between points in the metric space R2.

1.3 Making metric spaces into topological spaces

Let E = {10−k | k ∈ Z>0}. The set E is the accuracy set. Specifying an element of E specifies
the desired number of decimal places of accuracy.

Let (X, d) be a strict metric space. Let x ∈ X and let ε ∈ E. The open ball of radius ε at x
is

Bε(x) = {y ∈ X | d(x, y) < ε}.

The neighborhood filter of an element x ∈ X is

N (x) = {N ⊆ X | there exists ε ∈ E such that Bε(x) ⊆ N}.

The metric space topology on X is

T = {U ⊆ X | if x ∈ U then there exists ε ∈ E such that Bε(x) ⊆ U}.

The following characterization of the metric space topology is frequently used as the definition
of the metric space topology.

Proposition 1.1. Let (X, d) be a strict metric space.

Let E = {10−k | k ∈ Z>0} and let B = {Bε(x) | ε ∈ E and x ∈ X}.

Let T be the metric space topology on X. Let U ⊆ X. Then U ∈ T if and only if

there exists S ⊆ B such that U =
⋃
B∈S

B.

Proof. (Sketch) If U =
⋃
B∈S B and x ∈ U then there exists Bδ(y) ∈ S with x ∈ Bδ(y). Letting

ε < δ − d(x, y) then Bε(x) ⊆ U . So U ∈ T .
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Generators of the neighborhood filter of x = (2, 2) in the metric space R2.

2 Continuous functions, interiors and closures

2.1 Interiors and closures

Let (X, T ) be a topological space. An open set in X is a subset U of X such that U ∈ T . A
closed set in X is a subset C of X such that the complement of C is an open set in X, i.e.

C is closed if X − C = {x ∈ X | x 6∈ C} is an open set in X.

Let (X, T ) be a topological space and let A ⊆ X.

The interior of A is the subset A◦ of X such that

(a) A◦ is open in X and A◦ ⊆ A,
(b) If U is open X and U ⊆ A then U ⊆ A◦.

The closure of A is the subset A of X such that

(a) A is closed in X and A ⊇ A,
(b) If C is closed in X and C ⊇ A then C ⊇ A.

Let (X, T ) be a topological space and let A ⊆ X.

An interior point of A is a element x ∈ X such that

there exists N ∈ N (x) such that N ⊆ A.

A close point to A is an element x ∈ X such that

if N ∈ N (x) then N ∩A 6= ∅.

Proposition 2.1. Let (X, T ) be a topological space and let A ⊆ X.
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(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

Proof. (Sketch) For part (a): Let I = {interior points of A} and use the definitions to show that
I ⊆ A◦ and A◦ ⊆ I. Part (b) is obtained from part(a) by carefully taking complements.

An interior point and a close point of B1(x) where x = (2, 2) in R2.

2.2 Continuous functions

Continuous functions are for comparing topological spaces.

Let (X, TX) and (Y, TY ) be topological spaces. A continuous function from X to Y is a function
f : X → Y such that

if V is an open set of Y then f−1(V ) is an open set of X,

where f−1(V ) = {x ∈ X | f(x) ∈ V }. An isomorphism of topological spaces, or homeomorphism,
is a continuous function f : X → Y such that the inverse function f−1 : Y → X exists and is
continuous.

Let X and Y be topological spaces and let a ∈ X. A function f : X → Y is continuous at a if
f satisfies the condition

if V is a neighborhood of f(a) in Y then f−1(V ) is a neighborhood of a in X,

i.e. if V ∈ N (f(a)) then f−1(V ) ∈ N (a).
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Proposition 2.2. Let (X, TX) and (Y, TY ) be topological spaces and let f : X → Y be a function.
Then f is continuous if and only if f satisfies

if a ∈ X then f is continuous at a.

Proof. (Sketch) This is a combination of the definitions of continuous, continuous at a, and the
definition of N (a) as in (1.1).

3 Limits in topological spaces

Let (X, TX) and (Y, TY ) be topological spaces. Let f : X → Y be a function and let a ∈ X and
y ∈ Y . Write

y = lim
x→a

f(x) if f satisfies:
if N ∈ N (y) then

there exists P ∈ N (a) such that N ⊇ f(P ).

Assume a ∈ X such that a ∈ X − {a} (in English: a is in the closure of the complement of {a}
so that a is not an isolated point). Write

y = lim
x→a
x 6=a

f(x) if f satisfies:
if N ∈ N (y) then

there exists P ∈ N (a) such that N ⊇ f(P − {a}).

For example, using the standard topology on R, the function f : R→ R given by

f(x) =

{
2, if x 6= 0,

4, if x = 0,
has lim

x→0
x 6=0

f(x) = 2 and lim
x→0

f(x) does not exist,

and, using the subspace topology on {0, 1} (a subspace of R), the function g : {0, 1} → R given
by

g(x) = 2, has lim
x→0

f(x) = 2 and lim
x→0
x6=0

f(x) is not defined.
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f : R→ R is continuous

f : R→ R is not continuous at a

Let (X, TX) and (Y, TY ) be topological spaces.

A sequence in X is a function
~x : Z>0 → X

n 7→ xn

Let (X, T ) be a topological space. Let (x1, x2, . . .) be a sequence in X and let z ∈ X. Write

z = lim
n→∞

xn if (x1, x2, . . .) satisfies:
if N ∈ N (z) then N contains all but

a finite number of elements of {x1, x2, . . .}.

More precisely,

z = lim
n→∞

xn if (x1, x2, . . .) satisfies:
if N ∈ N (z) then there exists ` ∈ Z>0

such that N ⊇ {x`, x`+1, . . .}.
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The spiral sequence an =
(
1
2e
iπ/4
)n

in C has limit point 0

The sequence an = (−1)n−1(1 + 1
n) in R has cluster points at 1 and at −1

3.1 Limits and continuity

Proposition 3.1. Let (X, TX) and (Y, TY ) be topological spaces. Let f : X → Y be a function.

(a) Let a ∈ X. Then

f is continuous at a if and only if lim
x→a

f(x) = f(a).

(b) Let a ∈ X such that a ∈ X − {a}. Then

f is continuous at a if and only if lim
x→a
x 6=a

f(x) = f(a).

Proof. (Sketch) The notation lim
x→a

f(x) = f(a) means that if N ∈ N (f(a)) then f−1(N) ⊇ P ,

where P ∈ N (a). But then f−1(N) ∈ N (a).
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3.2 Limits in metric spaces

Let E = {10−1, 10−2, . . .}.

Proposition 3.2. Let (X, dX) and (Y, dY ) be strict metric spaces. Let f : X → Y be a function
and let y ∈ Y .

(a) Let a ∈ X. Then

lim
x→a

f(x) = y if and only if f satisfies

if ε ∈ E then there exists δ ∈ E such that
if x ∈ X and dX(x, a) < δ then dY (f(x), y) < ε.

(b) Let a ∈ X be such that a ∈ X − {a}. Then

lim
x→a
x 6=a

f(x) = y if and only if f satisfies

if ε ∈ E then there exists δ ∈ E such that
if x ∈ X and 0 < dX(x, a) < δ then dY (f(x), y) < ε.

(c) Let (x1, x2, . . .) be a sequence in X and let z ∈ X. Then

lim
n→∞

xn = z if and only if (x1, x2, . . .) satisfies

if ε ∈ E then there exists ` ∈ Z>0 such that
if n ∈ Z≥` then d(xn, z) < ε.

Proof. (Sketch) The proof is accomplished by a careful conversion of the definitions of the limits
using the definition of the metric space topology and the definition of the open ball Bε(y) of
radius ε centered at y.

3.3 Limits of sequences capture closure and continuity in metric spaces

Theorem 3.3. (Closure in metric spaces) Let (X, d) be a strict metric space and let TX be the
metric space topology on X. Let A ⊆ X. Then

A =
{
z ∈ X | there exists a sequence (a1, a2, . . .) in A such that z = lim

n→∞
an
}
,

where A is the closure of A in X.

Proof. (Sketch) If z is a close point to A then a sequence (a1, a2, . . .) such that

a1 ∈ B0.1(z) ∩A, a2 ∈ B0.01(z) ∩A, a3 ∈ B0.001(z) ∩A, . . . ,

will have z = lim
n→∞

an.

Theorem 3.4. (Continuity for metric spaces) Let (X, dX) and (Y, dY ) be strict metric spaces.
Let TX be the metric space topology on X and let TY be the metric space topology on Y . Let
f : X → Y be a function. Then f is continuous if and only if f satisfies

if (x1, x2, . . .) is a sequence in X and lim
n→∞

xn exists then f
(

lim
n→∞

xn

)
= lim

n→∞
f(xn).
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Proof. (Sketch) The⇒ implication is similar to the proof of Theorem 3.1. For the⇐ implication
prove the contrapositive: If f is not continuous at a then there exists N ∈ N (f(a)) such that
f−1(N) 6∈ N (a) and letting

x1 ∈ B0.1(a) ∩ f−1(N)c, x2 ∈ B0.01(a) ∩ f−1(N)c, . . .

produces a sequence such that lim
n→∞

xn = a and lim
n→∞

f(xn) 6= f(a).

3.4 Limits of sequences capture closure and continuity in topological spaces
with countably generated neighborhood filters

A topological space (X, T ) has countably generated neighborhood filters, or is first countable, if
(X, T ) satisfies:

if x ∈ X then there exist subsets B1, B2, . . . of X such that
N (x) = {N ⊆ X | there exists k ∈ Z>0 such that N ⊇ Bk}.

Theorem 3.5. (Closure in topological spaces with countably generated neighborhood filters) Let
(X, T ) be a topological space with countably generated neighborhood filters. Let A ⊆ X. Then

A =
{
z ∈ X | there exists a sequence (a1, a2, . . .) in A such that z = lim

n→∞
an
}
,

Proof. (Sketch) If z is a close point to A and B1, B2, . . . are generators of N (z) then a sequence
(a1, a2, . . .) such that

a1 ∈ B1(z) ∩A, a2 ∈ B2(z) ∩A, a3 ∈ B3(z) ∩A, . . . ,

will have z = lim
n→∞

an.

Theorem 3.6. (Continuity for topological spaces with countably generated neighborhood filters)
Let (X, TX) and (Y, TY ) be topological spaces and assume that (X, TX) has countably generated
neighborhood filters. Let f : X → Y be a function. Then f is continuous if and only if f satisfies

if (x1, x2, . . .) is a sequence in X and lim
n→∞

xn exists then f
(

lim
n→∞

xn

)
= lim

n→∞
f(xn).

Proof. (Sketch) The proof is similar to the proof of Theorem 3.4 except with generatorsB1, B2, . . .
of N (a) replacing the open balls B0.1(a), B0.01(a), . . ..

4 Appendix: Proofs without skipping any steps

Years of practice are what enables a professional mathematician to perfect the skill of taking a
proof sketch and expanding it properly to fill in all the steps. For students learning this skill
(and for teachers such as myself that need to save time preparing their class) expanded proofs
of the proof sketches given in previous sections are included below.
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4.1 Alternative characterization of the metric space topology

Proposition 4.1. Let (X, d) be a strict metric space. Let

E = {10−1, 10−2, . . .} and let B = {Bε(x) | ε ∈ E and x ∈ X},

the set of open balls in X. Let T be the metric space topology on X. Let U ⊆ X. Then U ∈ T
if and only if

there exists S ⊆ B such that U =
⋃
B∈S

B.

Proof.

⇐: Assume U =
⋃
B∈S B.

To show: U ∈ T .
To show: If x ∈ U then there exists ε ∈ E such that Bε(x) ⊆ U .
Assume x ∈ U .
Since U =

⋃
B∈S B then there exists B ∈ S such that x ∈ B.

By definition of B there exists δ ∈ E and y ∈ X such that B = Bδ(y).
Since x ∈ B = Bδ(y) then d(x, y) < δ.
Let ε = 10−k, where k ∈ Z>0 is such that 0 < 10−k < δ − d(x, y).
To show: Bε(x) ⊆ Bδ(y).
To show: If p ∈ Bε(x) then p ∈ Bδ(y).
Assume p ∈ Bε(x).
Since d(p, y) ≤ d(p, x) + d(x, y) < ε+ d(x, y) < δ then p ∈ Bδ(y).
So Bε(x) ⊆ Bδ(y) ⊆ U .
Since Bδ(y) = B and B ∈ S then Bε(x) ⊆ U .
So U ∈ T .

⇒: Assume U ∈ T .
If x ∈ U then there exists εx ∈ E such that Bεx(x) ⊆ U .
To show: There exists S ⊆ B such that U =

⋃
B∈S B.

Let S = {Bεx(x) | x ∈ U}.
To show: U =

⋃
B∈S B.

To show: (a) U ⊇
⋃
B∈S B.

(b) U ⊆
⋃
B∈S B.

(a) If B ∈ S then B = Bεx(x) ⊆ U .
So U ⊇

⋃
B∈S B.

(b) To show: If x ∈ U then x ∈
(⋃

B∈S B
)

.

Assume x ∈ U .
Since x ∈ Bεx(x) and Bεx(x) ∈ S then x ∈

⋃
B∈S B.

So U ⊆
(⋃

B∈S B
)

.

So U =
⋃
B∈S B.

4.2 Interiors and closures

Proposition 4.2. Let X be a topological space. Let A ⊆ X.

(a) The interior of A is the set of interior points of A.
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(b) The closure of A is the set of close points of A.

Proof.

(a) Let I = {x ∈ A | x is an interior point of A}.
To show: A◦ = I.
To show: (aa) I ⊆ A◦.

(ab) A◦ ⊆ I.

(aa) Let x ∈ I.
Then there exists a neighborhood N of x with N ⊆ A.
So there exists an open set U with x ∈ U ⊆ N ⊆ A.
Since U ⊆ A and U is open U ⊆ A◦.
So x ∈ A◦.
So I ⊆ A◦.

(ab) Assume x ∈ A◦.
Then A◦ is open and x ∈ A◦ ⊆ A.
So x is a interior point of A.
So x ∈ I.
So A◦ ⊆ I.

So I = A◦.
(b) Let C = {x ∈ X | if N ∈ N (x) then N ∩A 6= ∅} be the set of close points of A.

Then

Cc = {x ∈ X | there exists N ∈ N (x) such that N ∩A = ∅}
= {x ∈ X | there exists N ∈ N (x) such that N ⊆ Ac}.

which is the set of interior points of Ac.
Thus, by part (a), Cc = (Ac)◦.
So C = ((Ac)◦)c.
To show: C = A.
To show: ((Ac)◦)c = A.

Claim: If F ⊆ X then (F ◦)c = F c.
Let F ⊆ X.
Then F ◦ is open and (F ◦)c is closed.
Since F ◦ ⊆ F , then (F ◦)c ⊇ F c.
So (F ◦)c ⊇ F c.
If V is closed and V ⊇ F c then V c is open and V c ⊆ F .
Thus, if V is closed and V ⊇ F c then V c ⊆ F ◦.
Thus, if V is closed and V ⊇ F c then V ⊇ (F ◦)c.
So (F ◦)c = F c.

Thus ((Ac)◦)c = (Ac)c.
Thus C = ((Ac)◦)c = (Ac)c = A.
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4.3 Limits and continuity

Theorem 4.3. Let (X, TX) and (Y, TY ) be topological spaces.
Let f : X → Y be a function.

(a) [Bou, Ch. 1 §2 Theorem 1(d)] f is continuous if and only if f satisfies:

if a ∈ X then f is continuous at a.

(b) [Bou, Ch. 1 §7 Prop. 9] Let a ∈ X. Then

f is continuous at a if and only if lim
x→a

f(x) = f(a).

(c) [Bou, Ch. 1 §7 no. 5] Let a ∈ X such that a ∈ X − {a}. Then

f is continuous at a if and only if lim
x→a
x 6=a

f(x) = f(a).

(d) [Bou, Ch. IX §2 no. 7 Proposition 10 and the remark following] Let (X, d) be a strict metric
space and let TX be the metric space topology on X. Then f is continuous if and only if f
satisfies:

if (x1, x2, . . .) is a sequence in X and

if lim
n→∞

xn exists then lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof.

(a) ⇒: To show: If f is continuous then f satisfies: if a ∈ X then f is continuous at a.
Assume f is continuous.
To show: If a ∈ X then f is continuous at a.
Assume a ∈ X.
To show: If N ∈ N (f(a)) then f−1(N) ∈ N (a).
Assume N ∈ N (f(a)).
Then there exists V ∈ TY such that f(a) ∈ V ⊆ N .
To show: f−1(N) ∈ N (a).
To show: There exists U ∈ TX such that a ∈ U ⊆ f−1(N).
Let U = f−1(V ).
Since f is continuous then U is open in X.
Since f(a) ∈ V ⊆ N then a ∈ f−1(V ) = U ⊆ f−1(N).
So f−1(N) ∈ N (a).
So f is continuous at a.

(a) ⇐: Assume that if a ∈ X then f is continuous at a.
To show: f is continuous.
To show: If V ∈ TY then f−1(V ) ∈ TX .
Assume V ∈ TY .
To show: f−1(V ) is open in X.
To show: If a ∈ f−1(V ) then a is an interior point of f−1(V ).
Assume a ∈ f−1(V ).
To show: There exists U ∈ N (a) such that a ∈ U ⊆ f−1(V ).
Since V ∈ TY and f(a) ∈ V then V ∈ N (f(a)).
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Since f is continuous at a then f−1(V ) ∈ N (a).
Let U = f−1(V ).
Then a ∈ U ⊆ f−1(V ).
So a is an interior point of f−1(V ).
So f−1(V ) is open in X.
So f is continuous.

(b) ⇒: To show: If f is continuous at a then limx→a f(x) = f(a).
Assume f is continuous at a.
To show: limx→a f(x) = f(a).
To show: If N ∈ N (f(a)) then there exists P ∈ N (a) such that N ⊇ f(P ).
Assume N ∈ N (f(a)).
To show: There exists P ∈ N (a) such that N ⊇ f(P ).
Since f is continuous at a and N ∈ N (f(a)) then f−1(N) ∈ N (a).
Let P = f−1(N).
Then f(P ) = f(f−1(N)) ⊆ N .
So limx→a f(x) = f(a).

(b) ⇐: To show: If limx→a f(x) = f(a) then f is continuous at a.
Assume limx→a f(x) = f(a).
To show: f is continuous at a.
To show: If N ∈ N (f(a)) then f−1(N) ∈ N (a).
Assume N ∈ N (f(a)).
To show: f−1(N) ∈ N (a).
To show: There exists U ∈ TX such that a ∈ U ⊆ f−1(N).
Since limx→a f(x) = f(a) then there exists P ∈ N (a) such that N ⊇ f(P ).
So f−1(N) ⊇ P .
Since P ∈ N (a), there exists U ∈ TX such that a ∈ U ⊆ P .
So there exists U ∈ TX such that a ∈ U ⊆ P ⊆ f−1(N).
So f−1(N) ∈ N (a).
So f is continuous at a.

(c) ⇒: Assume a ∈ X − {a}.
To show: If f is continuous at a then lim

x→a
x6=a

f(x) = f(a).

Assume f is continuous at a.
To show: lim

x→a
x6=a

f(x) = f(a).

To show: If N ∈ N (f(a)) then there exists P ∈ N (a) such that N ⊇ f(P − {a}).
Assume N ∈ N (f(a)).
To show: There exists P ∈ N (a) such that N ⊇ f(P − {a}).
Since f is continuous at a and N ∈ N (f(a)) then f−1(N) ∈ N (a).
Let P = f−1(N).
Then f(P − {a}) ⊆ f(P ) = f(f−1(N)) ⊆ N .
So lim

x→a
x 6=a

f(x) = f(a).

(c) ⇐: Assume a ∈ X − {a}.
To show: If lim

x→a
x6=a

f(x) = f(a) then f is continuous at a.

Assume lim
x→a
x6=a

f(x) = f(a).

To show: f is continuous at a.
To show: If N ∈ N (f(a)) then f−1(N) ∈ N (a).
Assume N ∈ N (f(a)).
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To show: f−1(N) ∈ N (a).
To show: There exists U ∈ TX such that a ∈ U ⊆ f−1(N).
Since lim

x→a
x 6=a

f(x) = f(a) there exists P ∈ N (a) such that N ⊇ f(P − {a}).

So f−1(N) ⊇ P − {a}.
Since N ∈ N (f(a)) then f(a) ∈ N and a ∈ f−1(N).
So f−1(N) ⊇ P .
Since P ∈ N (a), there exists U ∈ TX such that a ∈ U ⊆ P .
So there exists U ∈ TX such that a ∈ U ⊆ P ⊆ f−1(N).
So f−1(N) ∈ N (a).
So f is continuous at a.

(d) ⇒: Assume f is continuous.
To show: f satisfies

if (x1, x2, . . .) is a sequence in X and limn→∞ xn exists

then f
(

lim
n→∞

xn

)
= lim

n→∞
f(xn).

(*)

Assume (x1, x2, . . .) is a sequence in X and limn→∞ xn = a.
To show: f(a) = lim

n→∞
f(xn).

To show: If N ∈ N (f(a)) then there exists t ∈ Z>0 such that N ⊇ (f(xt), f(xt+1), . . .).
Assume N ∈ N (f(a)).
Since f is continuous then f−1(N) ∈ N (a).
Since limn→∞ xn = a then there exists ` ∈ Z>0 such that f−1(N) ⊇ {x`, x`+1, . . .}.
Let t = `.
Then f−1(N) ⊇ {xt, xt+1, . . .}.
So N ⊇ {f(xt), f(xt+1), . . .}.
So f satisfies (*).

(d) ⇐: To show: If f is not continuous then f does not satisfy (*).
Assume f is not continuous.
Then there exists a such that f is not continuous at a.
So there exists N ∈ N (f(a)) such that f−1(N) 6∈ N (a).
To show: There exists a sequence (x1, x2, . . .) such that limn→∞ xn exists and limn→∞ f(xn) 6=
f
(

limn→∞ xn
)
.

Since f−1(N) 6∈ N (a) then f−1(N) 6⊇ B10−`(a), for ` ∈ Z>0. Let

x1 ∈ B10−1(a) ∩ f−1(N)c, x2 ∈ B10−2(a) ∩ f−1(N)c, . . . .

To show: (da) limn→∞ xn = a.
(db) limn→∞ f(xn) 6= f(a).

(da) To show: If P ∈ N (a) then there exists ` ∈ Z>0 such that if n ∈ Z≥` then xn ∈ P .
Assume P ∈ N (a).
To show: There exists ` ∈ Z>0 such that P ⊇ {x`, x`+1, . . .}.
Since P ∈ N (a) then there exists ` ∈ Z>0 such that P ⊇ B10−`(a).
To show: P ⊇ {x`, x`+1, . . .}.
To show: If n ∈ Z≥` then xn ∈ P .
Assume n ∈ Z≥`.
Since n ≥ ` then 10−` ≤ 10−n and xn ∈ B10−n(a) ⊆ B10−`(a) ⊆ P .
So P ⊇ {x`, x`+1, . . .}.
So limn→∞ xn = a.

(db) To show: limn→∞ f(xn) 6= f(a).
To show: There exists M ∈ N (f(a)) such that {j ∈ Z>0 | f(xj) ∈M c} is infinite.
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Let M = N .
To show: {j ∈ Z>0 | f(xj) ∈ N c} is infinite.
Since xj ∈ f−1(N)c then f(xj) 6∈ N , for j ∈ Z>0.
So {f(x1), f(x2), . . .} ⊆ N c.
So {j ∈ Z>0 | f(xj) ∈ N c} is infinite.
So limn→∞ f(xn) 6= f(a).

So f does not satisfy (*).

To change the proof of (d) above to a proof for first countable topological spaces (X, TX), replace
the use of the open balls B10−1(a) ⊇ B10−2(a) ⊇ · · · by generators B1 ⊇ B2 ⊇ · · · of N (a), the
neighborhood filter of a.

4.4 The topology in a metric space is determined by limits of sequences

Theorem 4.4. Let (X, d) be a strict metric space and let A ⊆ X and let A be the closure of A.
Then

A =
{
z ∈ X | there exists a sequence (a1, a2, . . .) in A with z = lim

n→∞
an
}
.

Proof. Let R =
{
z ∈ X | there exists a sequence (a1, a2, . . .) in A with z = lim

n→∞
an
}

.

To show: (a) R ⊆ A.
(b) A ⊆ R.

(a) To show: If z ∈ R then z ∈ A.
Assume z ∈ R.
To show: z ∈ A.
We know there exists a sequence (a1, a2, . . .) in A with z = lim

n→∞
an.

To show: z is a close point of A.
To show: If N is a neighborhood of z then N ∩A 6= ∅.
Assume N is a neighborhood of z.
Since limn→∞ an = z then there exists ` ∈ Z>0 such that if n ∈ Z≥` then an ∈ N .
So N ∩A 6= ∅.
So z is a close point of A.
So R ⊆ A.

(b) To show: A ⊆ R.
To show: If z ∈ A then z ∈ R.
Let z ∈ A.
To show: z ∈ R.
To show: There exists a sequence (a1, a2, . . .) in A with z = lim

n→∞
an.

Using that z is a close point of A,

let a1 ∈ B0.1(z) ∩A, a2 ∈ B0.01(z) ∩A, a3 ∈ B0.001(z) ∩A, . . . .

To show: z = limn→∞ an.
To show: If P is a neighborhood of z then there exists ` ∈ Z>0 such that if n ∈ Z≥` then
an ∈ P .
Let P be a neighborhood of z.
Then there exists ` ∈ Z>0 such that B10−`(z) ⊆ P .
To show: If n ∈ Z≥` then an ∈ P .
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Assume n ∈ Z≥`.
Since n ≥ ` then 10−n ≤ 10−` and

an ∈ B10−n(z) ⊆ B10−`(z) ⊆ P,

So lim
n→∞

an = z.

So z ∈ R.
So A ⊆ R.

To change the proof of (b) above to a proof for first countable topological spaces (X, TX), replace
the use of the open balls B10−1(a) ⊇ B10−2(a) ⊇ · · · by generators B1 ⊇ B2 ⊇ · · · of N (a), the
neighborhood filter of a.

4.5 Limits in metric spaces

Proposition 4.5. Let (X, dX) and (Y, dY ) be strict metric spaces, let TX be the metric space
topology on X and let TY be the metric space topology on Y . Let f : X → Y be a function and
let y ∈ Y .

(a) Let a ∈ X. Then lim
x→a

f(x) = y if and only if f satisfies

if ε ∈ E then there exists δ ∈ E such that
if x ∈ X and dX(x, a) < δ then dY (f(x), y) < ε.

(b) Let a ∈ X such that a ∈ X − {a}. Then lim
x→a
x 6=a

f(x) = y if and only if f satisfies

if ε ∈ E then there exists δ ∈ E such that
if x ∈ X and 0 < dX(x, a) < δ then dY (f(x), y) < ε.

(c) Let (x1, x2, . . .) be a sequence in X and let z ∈ X. Then lim
n→∞

xn = z if and only if (x1, x2, . . .)

satisfies

if ε ∈ E then there exists ` ∈ Z>0 such that if n ∈ Z≥` then d(xn, z) < ε.

Proof. (a) By definition, lim
x→a

f(x) = y if and only if f satisfies: if N ∈ N (y) then there exists

P ∈ N (a) such that N ⊇ f(P ).

By definition of the metric space topology, N ∈ N (y) if and only if there exists ε ∈ E such that
Bε(y) ⊆ N .

Thus lim
x→a

f(x) = y if and only if f satisfies: if Bε(y) is an open ball at y then there exists Bδ(a),

an open ball at a such that Bε(y) ⊇ f(Bδ(a)).

By definition, Bδ(a) = {x ∈ X | d(x, a) < δ}.
Thus, lim

x→a
f(x) = y if and only if f satisfies: if ε ∈ E then there exists δ ∈ E such that if x ∈ X

and dX(x, a) < δ then dY (f(x), y) < ε.

(b) By definition, lim
x→a
x 6=a

f(x) = y if and only if f satisfies: if N ∈ N (y) then there exists P ∈ N (a)

such that N ⊇ f(P − {a}).
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By definition of the metric space topology, N ∈ N (y) if and only if there exists ε ∈ E such that
Bε(y) ⊆ N .

Thus lim
x→a
x 6=a

f(x) = y if and only if f satisfies: if Bε(y) is an open ball at y then there exists Bδ(a),

an open ball at a such that Bε(y) ⊇ f(Bδ(a)− {a}).
By definition, Bε(y) = {x ∈ Y | d(x, y) < ε} and Bδ(a)− {a} = {x ∈ X | 0 < d(x, a) < δ}.
Thus, lim

x→a
x 6=a

f(x) = y if and only if f satisfies: if ε ∈ E then there exists δ ∈ E such that if x ∈ X

and 0 < dX(x, a) < δ then dY (f(x), y) < ε.

(c) By definition, lim
n→∞

xn = z if and only if (x1, x2, . . .) satisfies: if P ∈ N (z) then there exists

` ∈ Z>0 such that P ⊇ {x`, x`+1, . . .}.
By definition of the metric space topology, P ∈ N (y) if and only if there exists ε ∈ E such that
Bε(y) ⊆ P .

So lim
n→∞

xn = z if and only if (x1, x2, . . .) satisfies: if ε ∈ E then there exists ` ∈ Z>0 such that

Bε(z) ⊇ {x`, x`+1, . . . , }.
By definition, Bε(a) = {x ∈ X | d(x, a) < ε}.
Thus, lim

n→∞
xn = z if and only if (x1, x2, . . .) satisfies: if ε ∈ E then there exists ` ∈ Z>0 such

that if n ∈ Z≥` then d(xn, z) < ε.
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