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Abstract

We present a systematic approach to writing adjoint Higgs vacuum expectation values (vevs),

which break a symmetry G to differently embedded isomorphic copies of a subgroup belonging to

the chain G ⊃ H1 ⊃ · · · ⊃ Hl, as linear combinations of each other. Given an adjoint Higgs vacuum

expectation value h breaking G → H, a full complement of vevs breaking G to different embeddings

of the subgroup H can be generated through the Weyl group orbit of h. An explicit formula for

recovering each vev is given. We focus on the case when H stabilizes the highest weight of the

lowest dimensional fundamental representation, where the formula is exceedingly simple. We also

discuss cases when the Higgs field is not in the adjoint representation and apply these techniques

to current research problems, especially in domain-wall brane model building.
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I. INTRODUCTION

Symmetry breaking is a crucial aspect of modern particle physics. In particular the

symmetry breaking sectors of theories extending the standard model are studied intensively.

Many of the most puzzling problems in generic standard model extensions, such as the

gauge hierarchy and parameter proliferation problems, arise because of the use of elementary

scalar fields to spontaneously break symmetries. Deeper insights into both the physics and

mathematics of symmetry breaking are thus worth having.

The purpose of this paper is to explain the mathematics of differently embedded but

isomorphic subgroups, where the latter are obtained from the former through symmetry

breaking. This issue has arisen in a number of contexts in the high-energy physics literature,

including:

• Grand unified theories (GUTs), where so-called “flipped” models arise whenever there

are alternative embeddings of a given GUT inside a larger GUT [1],[2].

• Domain-wall brane scenarios which use the “clash of symmetries” mechanism [4],

[3],[6]. This idea was the main motivation for us to pursue the present study.

• The low-energy limit of Yang-Mills theory.

• Whenever there are multiple copies Φ1,Φ2, . . . of a given representation of Higgs fields,

with vacuum expectation values (vevs) 〈Φ1〉, 〈Φ2〉, . . . breaking the gauge group to

isomorphic but differently embedded subgroups. This is a special case of what is

generally termed “vacuum alignment”.

Each of these physical contexts will be reviewed in more detail in the next section. Of course,

there may well be other applications for different embeddings of isomorphic subgroups.

In this paper we give results for the adjoint representation of a Lie groupG, describing how

(and when) the vacuum expectation values (vevs) of a collection of symmetry breaking fields,

which cause an internal symmetry G to break along a chain of subgroups G ⊃ H1 ⊃ · · · ⊃ Hl,

can be written as a linear combination of an equivalent set of vevs which break G to an

isomorphic but differently embedded subgroup chain G ⊃ gH1g
−1 ⊃ · · · ⊃ gHlg

−1, for those

g ∈ G which map a Cartan subalgebra into itself. These different embeddings are related by

conjugation by an element of the Weyl group. We highlight a simple method for constructing
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linear combinations relating vevs which pick out differently embedded isomorphic copies of

the subgroup H , which stabilizes the highest weight of the lowest dimensional fundamental

representation.

More generally we consider an arbitrary representation. We begin with an explicit choice

of the Cartan subalegbra h1, . . . , hl, transcribed from the branching rules of the representa-

tion for G ⊃ H1 ⊃ · · · ⊃ Hl, where each Hi = H ′
i×U(1)H1

×· · ·×U(1)Hi
includes U(1)H1,...,Hi

factors generated by h1, . . . , hi respectively. For conjugations of the Lie algebra L by g ∈ G

we give results for how (and when) the Cartan subalgebra gh1g−1, . . . , ghlg−1 can be written

as a linear combination of h1, . . . , hl. We cover the special case of linear combinations relat-

ing the generator h of the U(1)H factor in the subgroup, H = H ′ × U(1)H , which stabilizes

the highest weight of the representation. We also cover how to write the weights of vevs

which break the symmetry to these differently embedded subgroups as linear combinations

of each other.

In Sec. VI we clearly state the formula for recovering the adjoint Higgs vevs which break

G to different embeddings of a subgroup H as linear combinations of vevs breaking G along

the chain G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl. We also treat the relation between the weights of vevs

causing G to break to different embeddings of a subgroup H , for a nonadjoint Higgs field.

This key result is preceeded, in Sec. II, by a discussion of the four physical contexts listed

above where these results may be applied. In Sec. III we canvas the notation we intend to

use. Sections IV-V set up the proof and the explanation behind the formulas presented in

Sec. VI. The remaining sections contain case studies which physically contextualize the root

systems discussion in this paper and explicitly apply the formulas derived in VI, as well as

the conclusion.

II. MOTIVATION

We now explain some of the physical contexts for our work in more detail.

A. Flipped grand unification

The simplest example of flipped grand unification is flipped SU(5) [1],[2]. The relationship

between standard and flipped SU(5) may be explained using two different embeddings of
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SU(5)×U(1) inside SO(10). Call these two subgroups SU(5)s×U(1)Xs
and SU(5)f×U(1)Xf

.

One of these embeddings has been labelled s for “standard”, and the other f for “flipped”.

The selection of one as standard is purely a matter of convention; the important issue

is the relationship between the two embeddings. Having decided to call one embedding

“standard”, the standard weak hypercharge generator is identified as the Ys obtained through

SU(5)s → SU(3) × SU(2) × U(1)Ys
. By contrast in the flipped case, the weak hypercharge

generator is Yf , which arises from a second embedding of SU(5) inside SO(10); namely

SO(10) → SU(5)f × U(1)Xf
→ [SU(3) × SU(2) × U(1)Yf

] × U(1)Xf
, where Xf is a linear

combination of Ys and Xs. U(1)Yf
is not a subgroup of SU(5)s, in fact Yf is a linear

combination of Ys and Xs which is linearly independent of Xf .

This concept can be extended through E6 grand unification. The subgroup chain

E6 → SO(10)× U(1)′′ → SU(5)× U(1)′ × U(1)′′ (II.1)

can be shown to contain three possible candidates for weak hypercharge: standard, flipped,

and double-flipped. Standard hypercharge is a generator of SU(5). The flipped choice

is a linear combination of standard hypercharge and the U(1)′ generator, while the double-

flipped choice also involves an admixture of the generator of U(1)′′. Once again, each of these

candidate hypercharges is actually a generator of a differently-embedded SU(5) subgroup

within E6.

B. Domain-wall brane models

This work was primarily motivated by a study of domain wall topological defects created

by an adjoint scalar field, X . In particular we study the case where the Lagrangian is

invariant under a discrete symmetry, Z, and a continuous internal symmetry G but along

two distinct antipodal directions the asymptotic configuration of the scalar field breaks

Z ×G down to differently embedded isomorphic copies of H ⊂ G. This construction has a

natural manifestation in grand-unified models with gauge group G and a single infinite extra

dimension. Here the adjoint scalar field interpolates between two vacuum configurations

preserving subgroups H and zgHg−1 (for some z ∈ Z and g ∈ G) as a function of the
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extra dimensional co-ordinate, y.1 The case g = 1 defines what may be called the standard

domain wall or kink. In this case, the spontaneous symmetry breaking produces exactly the

same unbroken subgroup H on opposite sides of the domain wall. At generic values of y, the

configuration is also stabilized by exactly that same H , except for a finite number of points

where the unbroken subgroup may be instantaneously larger than H . The interesting fact is

that for certain g 6= 1, domain wall solutions can also exist. This situation has been termed

the “clash of symmetries (CoS)”, because now the unbroken subgroups in the “bulk” on

opposite sides of the domain wall are no longer identical, though they are isomorphic [4],[3],

[6].

One reason to be interested in CoS domain walls is the dynamical localization of mass-

less gauge fields to the domain wall, thus effecting a dimensional reduction from a d + 1-

dimensional gauge theory to a (d− 1) + 1-dimensional gauge theory. The idea, which is an

elaboration of an original proposal due to Dvali and Shifman [5], is as follows. We suppose

that the non-Abelian factors in the H and gHg−1 gauge theories produced on opposite sides

of the wall are in confinement phase. The underlying mechanism for this might, for example,

be dual superconductivity. On the wall, the unbroken subgroup is H ∩ gHg−1, which is a

subgroup of both H and gHg−1. The idea is that the gauge fields of a certain subgroup of

H∩gHg−1 are dynamically localized, due to the mass gap created by the confining dynamics

in the bulk. An example of this situation has been provided in [6]. Here, E6 breaks to differ-

ently embedded SO(10)×U(1) subgroups in the bulk on opposite sides of the domain wall.

For appropriately chosen pairs of these subgroups, their intersection is SU(5)×U(1)×U(1).

By hypothesising that the SO(10) gauge forces lead to confinement, the conclusion is that

the SU(5) gauge fields should be dynamically localized on the wall.2 This is interesting for

model building when d = 4, because the dynamically-localized d = 3 SU(5) gauge theory

could form the basis for a phenomenologically-realistic standard model extension.

1 The role of the discrete symmetry breaking is to provide disconnected vacua which then serve as the bound-

ary conditions for topologically non-trivial domain wall solutions. Cosmologically, one expects domain

wall formation when causally disconnected patches of spacetime acquire different vacuum configurations.
2 It has not been definitely established that the Dvali-Shifman mechanism works, but the heuristics are

compelling. Note that for d > 3, the bulk dynamics is governed by a non-renormalisable gauge theory

that must be implicitly defined with an ultraviolet cut-off, beyond which new physics must be invoked

to complete the dynamics. Studies of Yang-Mills theory in 4 + 1 dimensions at finite lattice spacing,

which acts as an ultraviolet cut-off, support the existence of a confinement phase when the gauge coupling

constant is above a critical value.
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To implement the CoS mechanism we must solve the Euler-Lagrange equations for X
for boundary conditions as y → ±∞ breaking G × Z to H and zgHg−1, respectively.

Therefore it is necessary to understand how the boundary conditions breaking G to gHg−1

can be written as a linear combination of the adjoint scalar field vevs breaking G along the

H1,2,3,...,l branching direction in the Cartan subalgebra.

Solutions to the Euler-Lagrange equations satisfying different boundary conditions have

different energies. A boundary condition preserving a symmetry H can be continuously

transformed into a boundary condition preserving any other isomorphic subgroup gHg−1

inside G, and for some choices of g solutions interpolating between the H- and zgHg−1-

preserving boundary conditions exist. The phenomenology of each of these domain wall

solutions is different because each different non-isomorphic intersection H ∩ gHg−1 will give

rise to a different gauge theory localized on the domain wall. Hence an exhaustive search for

the lowest energy stable domain wall configuration must be executed. This search must range

through all solutions to the Euler-Lagrange equations with different boundary conditions.

In this case a systematic method for finding all the different possible configurations must

be established. To trap a copy of the standard model gauge group on the domain wall,

the grand unified gauge group must have a comparatively high rank, for example E6 as in

[6]. For high rank groups a method for writing one set of boundary conditions in terms of

another becomes critical.

To find the vev for the adjoint X breaking G to a subgroup gHg−1 as a linear combination

of vevs along the H1,2,3,...,l branching direction in the Cartan subalgebra, the authors of [6]

wrote down the Casimir operators (invariants) for a general linear combination of the Cartan

subalgebra, h1, . . . , hl. The coordinates in the Cartan subalgebra space which extremize the

Casimir operators correspond to linear combinations which break G to certain subgroups,

including H and gHg−1. The physical reason for this is: invariance of the action under the

internal symmetry forces the potential to be a polynomial in the Casimir invariants. There-

fore extrema of the Casimir operators correspond to degenerate minima in the vacuum

manifold associated with spontaneous breaking of the internal symmetry G to various sub-

groups, including to differently embedded isomorphic copies of a subgroup H = H ′×U(1)H .

Hence the coefficients in the linear combination which extremize the Casimir invariants are

precisely the components of the adjoint Higgs field in the original Cartan subalgebra basis

which combine to give the U(1)gHg−1 generator which spontaneously condenses to break
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G → gHg−1. This approach is labor intensive, and the techniques to be explained in this

paper will improve upon it.

C. Low-energy limit of Yang-Mills theory

We have found a natural motivation for our work in domain wall formation due to the

breaking of a global symmetry on cosmological scales. At the other end of the spectrum, in

low energy effective models for SU(3) (and SU(2)) pure Yang-Mills gauge theories, domain

walls form due to a breakdown of Weyl group symmetry caused by gluon condensation.

This gives rise to a trapping of gauge fields on the domain wall. Galilo and Nedelko [7] work

with an effective potential generated by loop order corrections in a low energy effective field

theory approach to QCD:

Ueff =
1

12
Tr

(

C1F̂
2 +

4

3
C2F̂

4 − 16

9
C3F̂

6

)

, (II.2)

where the potential is confining provided C1 > 0, C2 > 0, C3 > 0, and the non-Abelian

gauge field strength tensor, F̂µν , can be written in terms of the SU(3) Lie algebra structure

constants fabc as,

F a
µν = ∂µG

a
ν − ∂νG

a
µ − ifabcGb

µG
c
ν ,

(

F̂µν

)

bc
= F a

µνT
a
bc, T a

bc = −ifabc. (II.3)

The second order Casmir invariant Tr(F̂ )2 = −3F a
µνF

a
µν ≤ 0, causing the minimum of the

effective potential to occur at a nonzero gluon field strength.

F a
µνF

a
µν =

4

9C2
3

(√

C2
2 + 3C1C3 − C2

)2

Λ4 > 0, (II.4)

where Λ is the QCD confinement scale.

Galilo and Nedelko [7] look at the effective potential for F̂µν = hχBχ
µν , which involves

restricting the full SU(3) gauge theory to the U(1) × U(1) Abelian subspace, where the

generators are given as a linear combination of the diagonal Gell-Mann matrices,

hχ = χ1λ3 + χ2λ8, (II.5)

and the associated field strength Bχ
µ,ν can be found by using the Abelian subalgebra version

of (II.3) on Bχ
µ = χ1G3

µ + χ2G8
µ. The minima of the effective potential are located at:
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χ = (Cos
(2n+ 1)π

6
, Sin

(2n+ 1)π

6
) for n ∈ {0, . . . , 5}. (II.6)

They are related by a discrete Weyl group symmetry. The requirement that QCD remains

unbroken despite a non-zero background field strength means the background field must

be the average of an ensemble of gauge field configurations with a high degree of disorder

and spatial variation of the direction χ in colour-space. This causes different vacua to be

picked out in different spatial regions. Galilo and Nedelko [7] explain that domain wall

configurations are formed by gauge fields interpolating between these vacua. Collectively

the hχ describe the vevs of an adjoint Higgs field which break SU(3) to U(1)× U(1). Here

they again form the boundary conditions for the domain wall.

In the pure SU(2) Yang-Mills theory domain walls form between vacua preserving different

embeddings of a U(1)α symmetry associated with magnetic charge [8].

In both the above models there is an opportunity to trap gauge fields on the domain

wall. This analysis can be generalized to SU(n) pure Yang-Mills theory where the rank of

the algebra will again necessitate a systematic way of identifying all the boundary conditions

for the domain walls.

D. Vacuum alignment

Many extensions of the standard model feature multiple copies Φ1, Φ2, . . . of Higgs

multiplets transforming according to a given representation of the gauge groupG. In general,

their vevs 〈Φ1〉, 〈Φ2〉, . . . are not aligned in the internal representation space, so each

multiplet breaks G to a different subgroup, with the net unbroken symmetry being the

intersection of all of these individual subgroups. These subgroups may or may not be all

isomorphic, depending on the model and the context. For the cases where the individual

subgroups are indeed isomorphic but differently embedded in the parent group G, then our

analysis is relevant.

III. BACKGROUND AND NOTATION

We now clearly outline some of the terminology and notation we use throughout this

document. To do this we devote a paragraph to spontaneous symmetry breaking, which
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is the overarching framework. A reader who is familiar with the concept of spontaneous

symmetry breaking and standard notation in QCD and root systems may choose to skip

this section and use it as a reference.

Spontaneous symmetry breaking occurs when the action has a symmetry G, but the

lowest energy configuration of the potential (the vacuum) is stabilized by a subgroup H ,

called the little group of G. Because the potential is invariant under G, the orbit of H

in G, M = G/H , forms a manifold of degenerate minima of the potential known as the

vacuum manifold. There exists a point P in the vacuum manifold associated with the coset

1H . All the elements tl, belonging to the Lie subalgebra of H , LH , generate infinitesimal

diffeomorphisms which fix P , while Lie algebra elements, m, belonging to the complement

of LH in the Lie algebra L induce parallel translation along geodesics at point P in M.

A parallel translation (induced by m) from P to a neighboring point in the vacuum

manifold, Q, is accompanied by a continuous change in the space of diffeomorphisms which

fix P to the space of diffeomorphisms which fix Q. The latter is given by gHg−1, where g

is the Lie group element generated by m. Physically, members of the complement of LH

in L generate symmetries of the action which nevertheless shift the vacuum of the theory

associated with point P . If the vacuum at point P is designated |0〉 and has the property

H |0〉 = |0〉 then the vacuum at Q is g |0〉 and is consequently fixed by gH g−1 g |0〉 = g |0〉.
We establish some notation which will help elucidate the following discussion. We choose

to work exclusively with diagonal Cartan subalgebra generators, which can be done without

loss of generality because given an arbitrary Cartan subalgebra it is always possible to

simultaneously diagonalize each member using a similarity transformation within the Lie

algebra. If the Lie algebra has rank l we choose hi where i ∈ {1, . . . , l} to refer to our basis

for the Cartan subalgebra.

Throughout this document we physically contextualize our result using QCD and the

weak force as examples. To do this we choose explicit representations. In each case we make

use of the adjoint representation and the lowest dimensional fundamental representation,

otherwise known as the smallest faithful representation.

In QCD for the 3 representation of SU(3) we use the Gell-Mann matrices λ1, . . . , λ8 as

generators. We refer to the gluons as a set of 8 Lorentz 4-vector fieldsGi
µ where i ∈ {1, . . . , 8}

distributed over the Gell-Mann matrices; we write Xµ
i = Gµ

i λi where there is no intended
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sum over i. We also make use of the linear combinations of the off diagonal gluons:

Z1
µ =

1√
2
(X1

µ + iX2
µ), Z2

µ =
1√
2
(X4

µ + iX5
µ), Z3

µ =
1√
2
(X6

µ + iX7
µ). (III.1)

Correspondingly we take linear combinations of the two diagonal gluons, renamed for nota-

tional convenience X3
µ = A1

µ and X8
µ = A2

µ,

Bp
µ = Ai

µα
p
i , (III.2)

where p ∈ {1, 2, 3} and the αp
i vectors are the three roots α

1
i = (1, 0), α2

i = (1/2,
√
3/2), α3

i =

(−1/2,
√
3/2). In keeping with this notation we use a relabeling of the diagonal Gell-Mann

matrices λ3 = A1 and λ8 = A2 to define the SU(3) Lie algebra generators κ = Aiα1
i , ρ = Aiα2

i

and ε = Aiα3
i associated respectively with B1

µ, B
2
µ and B3

µ. We also give rather unimaginative

names to the Lie algebra generators associated with the valence gluons Z1
µ, Z

2
µ and Z3

µ:

Z1 = λ1 + iλ2, Z−1 = λ1 − iλ2, (III.3)

Z2 = λ4 + iλ5, Z−2 = λ4 − iλ5, (III.4)

Z3 = λ6 + iλ7, Z−3 = λ6 − iλ7. (III.5)

Notice these are precisely the raising and lowering operators of the SU(3) Lie algebra.

Extending the SU(3) example we will refer to the I-spin, V-spin and U-spin directions in

colour space, which describe the three Cartan preserving embeddings of SU(2) inside SU(3).

These are the three embeddings which have the Cartan subalgebra generators for SU(2)

as a subset of the Cartan generators for SU(3). In terms of the Gell-Mann matrices, the

generators of the SU(2) subgroup in each case are

λ1, λ2, κ
︸ ︷︷ ︸

2(I-spin)

, λ4, λ5, λ6, λ7, λ8

λ1, λ2, λ4, λ5, ε, λ6, λ7
︸ ︷︷ ︸

2(V-spin)

, ε′

λ1λ2, ρ, λ4, λ5
︸ ︷︷ ︸

2(U-spin)

, λ6, λ7, ρ
′ (III.6)

where we have chosen to introduce complementary matrices to the ρ and ε, namely ρ′ =

−
√
3/2A1 + 1/2A2 and ε′ =

√
3/2A1 + 1/2A2 respectively, so that each set of Lie algebra
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generators contains a diagonal Cartan subalgebra, which is orthogonal under the matrix

trace.

In our weak force examples we use the Pauli matrices {τ1, τ2, τ3} as a vector space basis

for the adjoint representation (note τ3 is the diagonal generator of the weak isospin gauge

group, I2, in this representation) and the standard notation for the three gauge bosons

W 1
µ = w1

µτ
1,W 2

µ = w2
µτ

2,W 3
µ = w3

µτ
3 .

Analogously to the QCD case we consider linear combinations of the weak force gauge

bosons W+
µ = w+

µ τ
+ = W 1

µ − iW 2
µ , W−

µ = w−
µ τ

− = W 1
µ + iW 2

µ and W 0
µ = w3

µτ
3 = W 3

µ , and

the corresponding generators τ+ = τ1− iτ2, τ− = τ1+ iτ2 and τ0 = τ3. We use this notation

because +1, -1 and 0 are the respective U(1)Q quantum numbers or electric charges of these

linear combinations.

The adjoint action of the Lie algebra adhi ·Eα on itself is defined by adhi ·Eα = [hi, Eα].

In the special cases where the Eα are eigenvectors under the adjoint operation for some hi

we write [hi, Eα] = α(hi)Eα

We say a linear transformation stabilizes a point if it maps that point back onto itself. For

example if |λ〉 is an eigenvector of a Lie algebra generator tk ∈ L, so that tk · |λ〉 = λ(tk) |λ〉,
then we say |λ〉 is stabilized by tk.

IV. ROOT SYSTEMS, THE WEYL GROUP

Our work relies heavily on the concept of roots and weights. Particle physicists often

refer to the roots and weights as the quantum numbers of particles belonging to a nontrivial

representation space of a non-Abelian gauge group. Consider the SU(2)-weak lepton doublet,

lL =




νeL

eL



 ∼ (1, 2)(−1), (IV.1)

where by (1, 2)(−1) we mean the lepton doublet does not transform under the SU(3) colour

symmetry, however it transforms under a two dimensional representation of the SU(2) weak

isospin gauge group and l → e−iθl under the U(1) weak hypercharge symmetry. The SU(2)

weights of the two states in this representation are the isospin quantum numbers of the

fermions. The electron neutrino, νe, has isospin quantum number +1/2. This is the highest

weight of the representation. The electron, e, has isospin quantum number −1/2. This is

the lowest weight of the representation.
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The roots are the isospin charges of the self-interacting gauge bosons,

W+
µ =




0 w+

µ

0 0



 , W−
µ =




0 0

w−
µ 0



 . (IV.2)

The gauge bosons are associated with the SU(2) raising operator τ+, and the SU(2) lowering

operator τ− respectively. These are eigenstates of the adjoint action of the weak-isospin

generator I2, that is adI2 · τ± = [I2, τ
±] = adI2(τ

±)τ±. The +1 isospin charge of W+ and -1

isospin charge of W− follow from:

[
I2,W

+
µ

]
= w+

µ

[
I2, τ

+
]
= 1W+

µ

[
I2,W

−
µ

]
= w−

µ

[
I2, τ

−
]
= −1W−

µ . (IV.3)

A. Root Systems and the Weyl group

In general, it is possible to represent a semi-simple rank l Lie Algebra using two types of

generators:

• a set of l mutually commuting diagonalizable generators, h1, . . . , hl , which together

with the linear combinations Σia
ihi, form a Cartan subalgebra, CG and,

• a collection of simultaneous eigenstates Eα of the adjoint action of every Cartan sub-

algebra generator.

Collectively the generators satisfy the commutation relations of the Lie algebra, L,

[hi, hj] = 0

[hi, Eα] = adhi
· Eα = α(hi)Eα

[Eα, E−α] = hα

[Eα, Eβ] = Nα,βE
α,β if α 6= −β

(IV.4)

where hα is a linear combination of the hi. We shall call α(hi) = αi for convenience. Each

eigenstate Eα can be labeled by an l-dimensional vector α = (α1, . . . , αl) called a root. The

root is a list of the l eigenvalues (structure constants) for the commutator, [hi, Eα], of Eα

with each hi ∈ CG.
The length of the roots depends on choosing a consistent normalization scheme for the

generators. We fix the normalization of our Lie algebra generators by choosing Tr (EαE−α) =
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2/(α, α), where (a, b) is an invariant inner product: for example if one used an invariant inner

product on the Lie algebra generators, such as the Cartan-Killing form or the regular trace

and restricted this inner product to the Cartan generators then because the root space is

dual to the Cartan subalgebra this induces an invariant inner product on the root space.

This is a condition known as the Chevalley-Serre basis. It guarantees the components of the

roots are integers.

It follows from equation (IV.4) that for each root α, labeling a generator Eα ∈ L, there
exists −α, labeling the hermitian conjugate generator E−α = Eα† ∈ L. We refer to Eα as a

raising operator, and E−α as a lowering operator. This leads us to partition the root system

into two disjoint sets: the positive and the negative roots. We elect to call a root, α, whose

first non-zero component is positive, a “positive root”. The corresponding negated positive

root, −α, is termed a ”negative root”. Not all of these roots are linearly independent. It is

convenient to introduce a basis for the root space.

A rank l Lie algebra has l independent Cartan subalgebra generators and therefore a set of

l linearly independent simple roots called {ζ (1), . . . , ζ (l)}. The simple roots are conventionally

chosen to be the l-dimensional subset of the positive roots, with the property that every

positive root can be written as a non-negative linear combination of {ζ (1), . . . , ζ (l)}.
It is clear from (IV.4) that each root α is the pullback of a member of the Cartan

subalgebra,

hα =
[
Eα, E−α

]
. (IV.5)

Multiplying this expression on the left hand side by hj ∈ {h1, . . . , hl} and taking the matrix

trace we see hα = α∨
j h

j (sum over j ∈ {1, . . . , l}) where α∨
j = gij2α

i/(α, α) (sum over

i ∈ {1, . . . , l}), where gij = [Tr (hihj)]
−1

is the inverse of the l × l matrix whose ijth element

is gij = [Tr (hihj)]. We call α∨ = 2α/(α, α) a co-root; for example ζ (i)∨ = 2ζ (i)/(ζ (i), ζ (i)) is

a simple co-root, for ζ (i) ∈ {ζ (1), . . . , ζ (l)}.
Linearity of the commutator bracket now allows us to extend our definition of the adjoint

action to any hβ acting on the Lie algebra according to

adhβ · Eα = α(hβ)Eα = (α, β∨)Eα. (IV.6)

The set of roots for a Lie algebra have the property that they completely characterize the

Lie algebra. They also form a crystallographic root system ∆ [13]. This means:

Definition IV.1. ∆ is a crystallographic root system if for all α, γ, β ∈ ∆,
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1. If α ∈ ∆, then χα ∈ ∆ if and only if χ = ±1.

2. The reflection of β in the hyperplane perpendicular to γ: sγ · β = β − (β, γ∨)γ also

belongs to ∆.

3. (β, γ∨) ∈ Z.

Notice that condition (2) implies that W = {sγ | γ ∈ ∆}, the subset of symmetries of ∆

generated by reflections in the hyperplanes orthogonal to the roots in ∆, forms a reflection

group known as the Weyl group.

Any element of W can be expressed as a sequence of refections in the simple roots. This

gives rise to a presentation of the Weyl group, called the Coxeter presentation, generated

by reflections in the hyperplanes orthogonal to the simple roots, ζ i. If we refer to the angle

between any two simple roots ζ i and ζj as π/mij, then the Coxeter presentation is:

W =

{

sζ
i|
(

sζ
i

sζ
j
)mij

= 1,
(

sζ
i
)2

= 1

}

. (IV.7)

The Coxeter presentation expression for each element, wγ ∈ W , is not unique. However if

we define the length of an expression to be the number of reflections, sζ
i

, it contains, then

the relations can be used to reduce all Coxeter presentations for wγ to a fixed minimum

length. This fixed length is a property of γ relative to the choice of {ζ1, . . . , ζ l}.
To understand the relations in equation (IV.7) let Hζi∨ be the (l -1)-dimensional hy-

perplane orthogonal to ζ i. Because ζ1 and ζ2 are linearly independent, the intersection

Hζ1∨∩Hζ2∨ is an (l -2)-dimensional space, the complementary space being the plane spanned

by ζ1 and ζ2. A reflection in Hζ1∨ followed by a reflection in Hζ2∨ , sζ
1

sζ
2

, is the same as

a rotation by twice the angle between Hζ1∨ and Hζ2∨ (that is a rotation by 2π/m12) in the

(ζ1, ζ2) plane. Therefore the relation (sζ
1

sζ
2

)m12 = 1 is equivalent to the statement that m12

concatenations of a rotation by an angle 2π/m12 is the identity transformation.

The Weyl group has a natural analogue in the matrix picture [14]. Here conjugation by

the operator

wγ = exp(Eγ)exp(E−γ)exp(Eγ), (IV.8)

acts on the Cartan subalgebra according to

wγ · hβ = wγhβw−γ = (sγ · β∨)ih
i = (sγ · β)∨i hi, (IV.9)
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where w−γ = (wγ)−1. We can check that (IV.8) is a matrix representation for the Weyl

group, acting as a module on the Cartan subalgebra CG, by checking that wγ · hβ = hsγ ·β.

This follows directly from the action of wγ · hβ on Eα:

[wγ · hβ , Eα] = (sγ · β)∨i [hi, Eα] = αi(sγ · β)∨i Eα

= (α, (sγ · β)∨)Eα = [hsγ ·β, Eα]. (IV.10)

Conversely conjugating (IV.10) by w−γ:

[hβ, w−γEαwγ] = (sγ · β, α∨)w−γEαwγ

= (β, (sγ · α)∨)w−γEαwγ = [hβ, Esγ ·α], (IV.11)

leads us to conclude w−γ ·Eα = Esγ ·α and therefore (IV.9) also furnishes a matrix represen-

tation for the Weyl group acting as a module on the space of generators {Eα| α ∈ ∆}. In

the root system picture its elements are orthogonal transformations which act to permute

the collection of roots belonging to ∆.

In the matrix picture the Cartan subalgebra is an invariant subspace for the Weyl group

and the Weyl group permutes the raising and lowering operators Eα.

B. Weights

More generally, the physical significance of being able to simultaneously diagonalize the

Cartan subalgebra is that, for any representation space of the Lie group, there exists a basis,

B, of simultaneous eigenvectors, |ν〉 , of the entire Cartan subalgebra. Each eigenvector

|ν〉 ∈ B, can be labeled by the l-dimensional vector, ν = (ν1, . . . , ν l) = (ν(h1), . . . , ν(hl)),

formed by listing its eigenvalues, hi |ν〉 = ν(hi) |ν〉, for hi = h1, . . . , hl . These l-dimensional

vectors are the weights.

In the adjoint representation the weights are the root vectors. If the Lie group represen-

tation acts as a module over a vector space of n-dimensional column vectors (analogously

to the SU(2)-weak lepton doublet), then the weights are the eigenvalues under left matrix

multiplication by the Cartan subalgebra generators. The eigenvector labeled by the highest

weight is annihilated by all raising operators.

The Weyl group action on the adjoint representation space eigenbasis, w−γ · Eα, and

weights of the adjoint representation, sγ · α, from equations (IV.11) and condition (2) in
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definition IV.1, can be generalized. The Weyl group reflection of a weight ν in the hyperplane

orthogonal to root κ is:

sκ · ν = ν − (ν, κ∨)κ. (IV.12)

In direct analogy to the adjoint representation, an arbitrary representation space for the Lie

group furnishes a representation space for the Weyl group. This can be seen directly from

the action of (IV.8) on |ν〉 ∈ B
w−κ · |ν〉 = |sκ · ν〉 . (IV.13)

The result follows from analyzing the action of hi ∈ CG on w−κ |ν〉:

hiw−κ |ν〉 = w−κ
(
wκhiw−κ

)
|ν〉

= w−κ
(
hi − κihκ

)
|ν〉

= w−κ
(
hi − κiκ∨

j h
j
)
|ν〉

=
(
νi − (ν, κ∨)κi

)
w−κ |ν〉

= [sκ · ν]i w−κ |ν〉

= hi |sκ · ν〉 . (IV.14)

where to get the second equality we have used hj = Σiδ
j
ih

i in equation (IV.9). Thus because

of (IV.8) and (IV.9) it is not a coincidence that every representation space for the Lie group

furnishes a representation space for the Weyl group.

We introduce some terminology we need to talk about weights. The weights belonging

to the Weyl group orbit of the highest weight are called extremal weights.

Consider a representation which has highest weight ν, and let Eδ ∈ L be a generic raising

operator for this representation. Then it is easy to see that each extremal weight µ = sκ · ν
where κ ∈ ∆, is also the highest weight with respect to a different choice of positive roots,

as |µ〉 is eliminated by an equivalent set of raising operators wκ ·Eδ ∈ L. However the Weyl

group permutes the set of Lie algebra generators, so both representations have the same

generators. We would like to have a way of distinguishing between these representations

and others which have qualitatively different sets of generators.

It is neccesary to work with a basis for the weight space {ω1, . . . , ωl} which is dual to

the simple roots, that is ωiζj∨ = δij . We call {ω1, . . . , ωl} fundamental weights. A linear

combination of {ω1, . . . , ωl} with non-negative coefficients is called a dominant weight. Every
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dominant weight is the highest weight of a representation, and up to conjugation by the Weyl

group every highest weight is dominant.

V. LIE SUBALGEBRAS AND EMBEDDINGS

Lie subalgebras LH ⊂ L have generators labeled by closed subroot systems ∆H ⊂ ∆,

where by a closed subroot system [13] we mean

Definition V.1. A closed subroot system is a root system, ∆H ⊂ ∆, such that for all

α, β ∈ ∆H if α + β ∈ ∆ then α + β ∈ ∆H .

We can see LH satisfies the Lie algebra commutation relations (IV.4) because whenever

Eα, Eβ ∈ LH and Nα,β 6= 0, we have [Eα, Eβ] ∈ LH (closure under the Lie bracket).

The Weyl group of the subroot system ∆H , WH = {sα|α ∈ ∆H}, is the subgroup of W,

which permutes the subset of the roots belonging to ∆H .

For each subroot system ∆H , or one of its Weyl group conjugates, there is a systematic

way of choosing a basis of simple roots consisting of a proper subset IH ⊂ {ζ1, . . . , ζ i}∪{−ζ0},
of the union of the simple roots for ∆ and, the negated highest weight of the adjoint repre-

sentation (negated highest root). The method is given in the Borel-de-Siebenthal theorem

(see the appendix X). The Coxeter presentation for WH is generated by reflections in the

hyperplanes Hζj∨, ζj ∈ IH orthogonal to the simple roots of ∆H .

The Weyl group action on the root system is regular (that is for all α, β ∈ ∆, there exists

precisely one sγ ∈ W such that β = sγ ·α). The orbit W ·∆H represents all the embeddings

of ∆H inside ∆. However we know that W∆H
maps ∆H back onto itself, so each element in

the orbit W∆H
·∆H = ∆H gives rise to the same embedding of LH inside L. Therefore the set

W/W∆H
·∆H represents all the “qualitatively different” embeddings of ∆H and LH inside ∆

and L respectively. By “qualitatively different” we mean the raising and lowering operators

belonging to LH and wκLHw
−κ are distinct subsets of the full complement of raising and

lowering operators belonging to L.
One outcome of this is that we now know the number of embeddings of LH inside L is

|W/W∆H
|. Because the Weyl group is finite we can simplify this expression3 to |W |/|W∆H

|.

3 This follows from the orbit stabilizer theorem: Suppose that a linear algebraic group G acts on the set X.

If G is finite then |G| = |G · x| · |Stabilizer(x)|, that is, the order of the orbit of x, |G · x|, divides |G|.
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VI. STATEMENT OF PROOF

We are looking for a complete set of embeddings of the subgroup chain G ⊃ H1 ⊃ H2 ⊃
· · · ⊃ Hl, where the vevs of the adjoint Higgs fields which break G down to these subgroups

and define a basis for the Cartan subalgebra h1, . . . , hl , can be written as linear combinations

of each other.

We have established that the embeddings of H1 within G arise from conjugation of the

Lie algebra LH1
for H1 by the Weyl group W/W∆H1

where W∆H1
is the Weyl group of

the maximal subgroup H1. Moreover we know conjugation by any Weyl group element

wκ ∈ W/W∆H1
acts on the Cartan subalgebra or vevs h1, . . . , hl according to

wκ · hj = Σi(δij − Σnκ
nδnjκ

∨
i )h

i = hj − κjhκ. (VI.1)

So after identifying the generators(roots) excluded from the embedding of H1 ⊂ G (∆H1
⊂

∆) we have a general formula for writing the vevs of the adjoint Higgs field wκ ·h1, . . . , wκ ·hl

causing the breaking of G ⊃ wκH1w
−κ ⊃ wκH2w

−κ ⊃ · · · ⊃ wκHlw
−κ as linear combination

of h1, . . . , hl . If, after choosing an embedding of H1 within G, identified with LH1
⊂ L, we

wish to find all the different embeddings of H2 within H1 which have LH2
⊂ LH1

we simply

repeat this procedure for W∆H1
/W∆H2

.

In the case where we are looking for the adjoint Higgs vevs, wκ · h, breaking G to dif-

ferent embeddings of the subgroup H = H ′ × U(1)H which stabilizes (the representation

space state labeled by) the highest weight of the lowest dimensional fundamental represen-

tation, |λ〉, these linear combination have a remarkably simple formula. We show that the

linear combination giving each vev is Σiµ(h
i)hi for an extremal weight µ of the fundamental

representation.

We first prove the adjoint Higgs vev, h, which breaks G to H is given by the linear

combination h = Σiλ(h
i)hi, where the coefficients are the coordinates of highest weight

of the fundamental representation. We then explain why other generators breaking G to

different embeddings wκ · H , wκ · h = Σiµ(h
i)hi, are the linear combinations of h1, . . . , hl

which have the co-ordinates of the extremal weights, µ(hi) as coefficients.

If Σiλ(h
i)hi is the adjoint Higgs vev which breaks G to H , then it is the generator of the

U(1)H factor in H = H ′ ×U(1)H . Therefore Σiλ(h
i)hi must stabilize |λ〉 (be a generator of

H) and it must commute with each generator, Eα ∈ LG, if and only if Eα ∈ LH .
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It is clear that Σiλ(h
i)hi is a generator of H because Σiλ(h

i)hi |λ〉 = (Σiλ(h
i)2) |λ〉.

Furthermore, let Eα ∈ LH . Then Eα is a raising or lowering operator and Eα stabilizes

|λ〉, therefore we must have Eα |λ〉 = 0. If α ∈ ∆H then −α ∈ ∆H , and by the same logic

E−α |λ〉 = 0. Consider the commutator

[Eα,Σiλ(h
i)hi] = Σiλ(h

i)[Eα, hi]

= Σiλ(h
i)αiEα

= λ(Σiα
ihi)Eα

= λ(hα)Eα

= λ([Eα, E−α])Eα

= 0. (VI.2)

Therefore Σiλ(h
i)hi commutes with all the elements of LH .

Assume Σiλ(h
i)hi commutes with a generator Eκ 6∈ LH which does not belong to the Lie

algebra of H , then we have

Σiλ(h
i)hi = wκΣiλ(h

i)hiw−κ

= Σiλ(h
i)hi − Σiλ(h

i)κ(hi)hκ

= Σiλ(h
i)hi − Σijλ(h

i)κ(hi)κ∨(hj)hj

= Σiλ(h
i)hi − Σj

2(λ, κ)

(κ, κ)
κ(hj)hj

= Σi

(
λ(hi)− (λ, κ∨)κ(hi)

)
hi

= Σi [s
κ · λ] (hi)hi. (VI.3)

This creates a contradiction because we are insisting Eκ does not stabilize |λ〉, so wκ |λ〉 =
|sκ · λ〉 6= |λ〉 and the two sets of coefficients (of the linearly independent Cartan subalgebra

generators h1, . . . , hl) in the above sum must be different. We have proved Σiλ(h
i)hi is the

adjoint Higgs vev, h, which breaks G to H .

Now each embedding wκ ·H = wκHw−κ will stabilize a state in the representation labeled

by an extremal weight wκ · |λ〉 = |µ〉. By the above argument, the center of the subgroup

wκ ·H which stabilizes |µ〉 is generated by Σiµ(h
i)hi. We have a remarkably easy formula for

reproducing the vevs which break G to all the different embeddings of the subgroup which

stabilizes the highest weight of the lowest dimensional fundamental representation, H , as a

linear combination of the Cartan subalgebra h1, . . . , hl. Notice that wκ must belong to a

19



nontrivial coset in W/W∆H
, because conjugation by wκ only takes us from one embedding

to another when sκ does not fix the highest weight.

We present a systematic method for determining the subgroup H directly from the ex-

tended Dynkin diagram for the Lie group G. Each unmarked node in the extended Dynkin

diagrams is labeled by a simple root. The node with a cross in the center is ζ0. To find

the Dynkin diagram for H we simply need to determine which of the simple roots in ∆

are also in ∆H . We also need to work out if the highest root ζ0 is in ∆H . The subset of

{ζ1, . . . , ζ l} ∪ {−ζ0} belonging to ∆H , will be the simple roots for ∆H .

First we determine which subset of the simple roots {ζ1, . . . , ζ l} belong to ∆H . Take the

highest weight, λ, and write it as a linear combination of the fundamental weights.

λ = a1ω1 + · · ·+ alωl (VI.4)

We assume this highest weight is dominant (a1, . . . , al ≥ 0), if it is not then it is always

possible to replace λ by one of the extremal weights which is dominant. Construct a set

Sλ = {j| aj = 0}. For all j ∈ Sλ we have (λ, ζj∨) = 0. We claim that ζj ∈ ∆H , that

is E±ζj |λ〉 = 0, for all j ∈ Sλ. Otherwise if E±ζj |λ〉 6= 0 consider the norm Nλ±ζj =

〈λ|E±ζj†E±ζj |λ〉. Because λ is the highest weight of the representation Nλ+ζj = 0 while

Nλ−ζj = 〈λ| [Eζj , E−ζj ] |λ〉 = 〈λ|λ〉(λ, ζj∨) = 0. For the remaining simple roots labeled by

k 6∈ Sλ, we have sζ
k · λ 6= λ, therefore wζk |λ〉 6= |λ〉 and from (IV.8) we know that one of

E±ζk does not stabilize λ.

The highest root(negated highest root) ±ζ0 does not belong to ∆H . This follows from

the fact that ζ0 is some linear combination of all the simple roots (with positive coefficients),

therefore if the set Sλ is non-empty (λ, ζ0) > 0.

So the Dynkin diagram for H can be reconstructed from the connected components of

the Dynkin diagram for G labeled by simple roots {ζj|j ∈ Sλ}. This uniquely defines the

non-Abelian factor H ′ of H . The full subgroup H which stabilizes the highest weight is a

product of H ′ with one Abelian factor U(1) for each k 6∈ Sλ. These extra U(1) factors are

generated by the Cartan subalgebra generators hζk , k 6∈ Sλ, which (by definition) stabilize

λ, even when the associated raising/lowering operators Eζk do not.

If the Higgs field does not belong to the adjoint representation then the above analysis

generalizes. The Weyl group reflections still give the different embeddings of the subgroup

chain G ⊃ H1 ⊃ · · · ⊃ Hl. If there is an associated Cartan subalgebra h1, . . . , hl defined
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as the generators of U(1)Hi
factors appearing in the subgroup chain through Hi = H ′

i ×
U(1)H1

× · · · ×U(1)Hi
(where H ′

i is some product of non-Abelian Lie groups) then equation

(VI.1) gives the linear combinations for the equivalent Cartan subalgebra generator for the

U(1)wκ·Hi factors belonging to the differently embedded subgroup chain G ⊃ wκH1w
−κ ⊃

· · · ⊃ wκHlw
−κ, where wκ ∈ W/W∆H

.

If a subgroup H ⊂ G annihilates a column vector |ν〉, labeled by a weight ν, then the

differently embedded subgroup wκHw−κ annihilates the column vector wκ |ν〉. Hence if |ν〉
breaks G to H , then |sκ · ν〉 breaks G ⊃ wκHw−κ and it follows directly from (IV.14) that

equation (IV.12) gives the coordinates of the new weights as a linear combination of ν (and

κ).

VII. INSIGHT

We wish to firmly ground the above discussion by applying these concepts to physical

systems. We physically contextualize the key concepts in Secs. IV and V via the smallest

effective example: embeddings of U-spin, I-spin and V-spin within the SU(3) QCD gauge

group. We also tackle the nontrivial problem of finding a full complement of domain wall

boundary conditions for an adjoint Higgs field which break E6 to different embeddings of

SO(10)×U(1) to demonstrate the effectiveness of the techniques developed in section (VI).

A. A Quantum Chromodynamics example

Consider the Weyl group conjugations giving rise to differently embedded copies of the

subgroups SU(2)×U(1) inside SU(3). Following [10] we rewrite the SU(3) pure Yang-Mills

quantum chromodynamics Lagrangian in terms of the off diagonal gluons Zp
µ, p ∈ {1, 2, 3}

and the dual potentials to the roots Bp
µ, p ∈ {1, 2, 3} defined in Sec. III:

L = −1

4
GµνGµν = Σp

{

−1

6

(
F p
µν

)2
+

1

2

∣
∣DpµZ

p
ν −DpνZ

p
µ

∣
∣
2 − igF p

µνZ
µ ∗
p Zν

p

−1

2
g2

[(
Zp ∗

µ Zp
ν

)2
+
(
Zp ∗

µ

)2
(Zp

ν)
2
]}

(VII.1)

where

F p
µν = ∂µB

p
ν − ∂νB

p
µ, DpµW

p
ν =

(
∂µ − igBp

µ

)
W p

ν . (VII.2)
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The Weyl group permutes the roots {±α1,±α2,±α3} of the SU(3) Lie algebra. Hence the

Weyl group action on the above Lagrangian will cause a permutation of the dual potentials

Bp
µ, p ∈ {1, 2, 3} spanning the Cartan subalgebra and also a permutation of the raising and

lowering operators Z1
µ ∈ span {Z1, Z−1}, Z2

µ ∈ span {Z2, Z−2}, Z3
µ ∈ span {Z3, Z−3} labeled

by the roots. The permutation is concordant with the geometric picture of the Weyl group

reflections of their root labels. Therefore the invariance of the above Lagrangian under Weyl

group reflections is encapsulated in the sum over the index p.

The clarity of this presentation is a direct consequence of the associated generators ε, ρ

and Z±p where p ∈ {1, 2, 3} (it is not necessary to include κ in this list, because SU(3) has

rank 2, however we can substitute it for either ε or ρ if we wish) forming a useful com-

putational basis for the Lie algebra: the Chevalley basis. Here each of the three subset

{κ, Z±1}, {ρ, Z±2} and {ε, Z±3} defines an embedding of SU(2) inside SU(3). These cor-

respond to the closed crystallographic root systems {±α1} whose Weyl group fixes a point

on the hyperplane orthogonal to α1, {±α2} and {±α3}, whose Weyl groups fix analogous

points. Cross checking this with Sec. III we see these are precisely the I-spin, V-spin and U-

spin embeddings. Each embedding commutes with one of the Abelian subgroup generators

λ8(= κ′), ρ′ or ε′ which we now have the tools to write as Σiµ(h
i)hi for any diagonal Cartan

subalgebra {h1, h2} for SU(3) (in Sec. III our Cartan subalgebra was chosen to be λ3 and

λ8) and the three extremal weights of the lowest dimensional fundamental representation

for SU(3).

B. Adjoint Higgs field domain-wall-brane boundary conditions breaking E6 →

SO(10) ×U(1)

We use the method developed in the previous section to find all the adjoint Higgs vevs

which break E6 to all the different embeddings of SO(10) × U(1); this example is directly

motivated by an extra-dimensional “clash of symmetries” domain wall brane model [6]. Our

choice of Cartan subalgebra for E6 is explained in table I, the entries of this table follow
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directly from the branching rules [9]:

E6 ⊃ SO(10)× U(1)h1 ⊃ SU(5)× U(1)h1 × U(1)h2

⊃ SU(3)× SU(2)×U(1)h1 × U(1)h2 × U(1)h3

⊃ SU(3)×U(1)h1 ×U(1)h2 ×U(1)h3 ×U(1)h4

⊃ SU(2)×U(1)h1 ×U(1)h2 ×U(1)h3 ×U(1)h4 ×U(1)h5

⊃ U(1)h1 × U(1)h2 × U(1)h3 × U(1)h4 ×U(1)h5 ×U(1)h6 . (VII.3)

As mentioned in Sec. II our primary motivation for studying this problem arose from

a co-dimension-1 clash-of-symmetries domain-wall brane. The brane originates from an E6

adjoint Higgs field X which condenses spontaneously to break translational invariance along

the extra dimension of a 4+1-dimensional space-time manifold.

The Lagrangian for this theory is invariant under a Z2 × E6 internal symmetry. It is

a linear combination of the invariant kinetic term Tr [DµXDµX ] and a potential formed

from the E6 Casmir invariants I2 = TrX 2 and I6 = TrX 6 as well as the powers I22 and I32 .

Casmir invariants corresponding to odd powers of X must be omitted due to the imposed

Z2, X → −X , symmetry. The potential is truncated at 6th order because the coupling

constants of higher order invariants have negative mass dimensions and are therefore sup-

pressed by powers of the putative ultraviolet completion scale (see Sec. II), yet the fourth

order invariants exhibit an accidental O(78) symmetry, so we must include a TrX 6 term. A

subset of the local minima of the Casimir invariants occur at adjoint Higgs vevs which break

Z2 × E6 → SO(10) × U(1). If the solution X to the associated Euler-Lagrange equations

interpolates between vacuum expectation values which break Z2 × E6 to a specific pair of

differently embedded copies of SO(10) × U(1) then [6] postulates a copy of the standard

model particles can be trapped on the 3+1-dimensional domain-wall brane. To find X it

is necessary to write the boundary conditions at the two antipodal extremes of the extra

dimension as a linear combination of the adjoint Higgs vevs h1, . . . , h6, the generators of the

Abelian subgroup factors given in (VII.3).

Because SO(10)×U(1) stabilizes the highest weight of the lowest dimensional fundamental

representation for E6 this is now a trivial problem. Each of the possible boundary conditions

which break E6 → SO(10)×U(1) can be written as a linear combination of h1, . . . , h6 using

Σiµ(h
i)hi where µ is one of the 27 extremal weights of the lowest dimensional fundamental

representation for E6. Explicitly the 27 different vevs breaking E6 → SO(10)×U(1) are
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60h1 60h2 60h3 60h4 60h5 60h6

1 20 0 0 0 0 0

2 −10 2
√
15 3

√
10 −5

√
6 0 0

3 −10 2
√
15 3

√
10 5

√
6 0 0

4 −10 2
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15 −2

√
10 0 5

√
2 5

√
6

5 −10 2
√
15 −2

√
10 0 5

√
2 −5

√
6

6 −10 2
√
15 −2

√
10 0 −10

√
2 0

7 −10 −2
√
15 −3

√
10 5

√
6 0 0

8 −10 −2
√
15 −3

√
10 −5

√
6 0 0

9 −10 −2
√
15 2

√
10 0 −5

√
2 −5

√
6

10 −10 −2
√
15 2

√
10 0 −5

√
2 5

√
6

11 −10 −2
√
15 2

√
10 0 10

√
2 0

12 5 −5
√
15 0 0 0 0

13 5 3
√
15 −3

√
10 5

√
6 0 0

14 5 3
√
15 −3

√
10 −5

√
6 0 0

15 5 3
√
15 2

√
10 0 −5

√
2 −5

√
6

16 5 3
√
15 2

√
10 0 −5

√
2 5

√
6

17 5 3
√
15 2

√
10 0 10

√
2 0

18 5 −
√
15

√
10 −5

√
6 5

√
2 5

√
6

19 5 −
√
15

√
10 −5

√
6 5

√
2 −5

√
6

20 5 −
√
15

√
10 −5

√
6 −10

√
2 0

21 5 −
√
15

√
10 5

√
6 5

√
2 5

√
6

22 5 −
√
15

√
10 5

√
6 5

√
2 −5

√
6

23 5 −
√
15

√
10 5

√
6 −10

√
2 0

24 5 −
√
15 −4

√
10 0 −5

√
2 −5

√
6

25 5 −
√
15 −4

√
10 0 −5

√
2 5

√
6

26 5 −
√
15 −4

√
10 0 10

√
2 0

27 5 −
√
15 6

√
10 0 0 0

TABLE I: The six diagonal generators h1–6 of E6. The diagonal elements of the generator hn are

found by taking the nth column and multiplying it by 1/60. Also the rows give the coefficients f1–6

of these generators that yield a linear combination that breaks E6 → SO(10)×U(1).
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14

15
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17
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19

20
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22

23

24
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26

27

FIG. 1: A pictorial representation of the twenty-seven rearrangements of the diagonal generator

h1 of E6. Each rearrangement can be reconstructed from one of the twenty-seven rows (or columns)

of symbols in this picture. To find the diagonal entries of the nth rearrangement, read along the nth

row and translate the symbols according to: circles © correspond to the single 1/3 entry, squares ✷

to −1/6 and crosses + to 1/12 (note that adjacent crosses are touching). The number in the centre

of each circle tells its row and column number (being the same). Row n of this picture corresponds

precisely to row n of Table I in the sense that the linear combination
∑6

a=1 fah
a, where the f1–6

are chosen from row n of Table I, yields the rearranged version of the generator h1 represented by

the symbols of row n in this picture.
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〈X 〉 ∝ Σ6
a=1fah

a (VII.4)

where the sextuplet f1,...,6 takes values from one of the rows of the Table I. We include a

figure from [12] which graphically identifies the diagonal entries of each of these 27 vevs

breaking E6 → SO(10)×U(1).

VIII. CONCLUSION

In a linear combination of the adjoint Higgs vevs which break G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl

we have described how to choose the coefficients so that the resulting vev breaks G to a

differently embedded isomorphic subgroup belonging to the chain G ⊃ gH1g
−1 ⊃ gH2g

−1 ⊃
· · · ⊃ gHlg

−1, for some g ∈ G. We have highlighted the simple case when the subgroup

we are breaking to stabilizes the highest weight of the lowest dimensional fundamental

representation for G and complemented our discusion with physical examples.

We also covered the more general case when the Higgs field is not in the adjoint representa-

tion. Here we discussed the relationship between the weights of vevs breaking G to differently

embedded copies of a particular subgroups. In addition we canvassed the relationship be-

tween the Cartan subalgebra generators h1, . . . , hl which generate the Abelian subgroups in

a chain G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl where each Hi = H ′
i×U(1)H1

×· · ·×U(1)Hi
and the Cartan

subalgebra generators for the conjugated chain G ⊃ gH1g
−1 ⊃ gH2g

−1 ⊃ · · · ⊃ gHlg
−1.

IX. ACKNOWLEDGEMENTS

This work was supported in part by the Australian Research Council and in part by

the Puzey Bequest to the University of Melbourne. DG was supported by the Netherlands

Foundation for Fundamental Research of Matter (FOM), and the Netherlands Organisation

for Scientific Research (NWO).

[1] S. M. Barr, Phys. Lett. B, 112, 219-222 (1982)

[2] J. P. Derendinger, Jihn E. Kim, D.V. Nanopoulos, Phys. Lett. B, 139, 170-176, (1984)

[3] E. M. Shin and R. R. Volkas, Phys. Rev. D 69, 045010 (2004) [hep-ph/0309008].

26

http://de.arxiv.org/abs/hep-ph/0309008


[4] A. Davidson, B. F. Toner, R. R. Volkas and K. C. Wali, Phys. Rev. D 65, 125013 (2002)

[hep-th/0202042].

[5] G. R. Dvali and M. A. Shifman, Phys. Lett. B 396 (1997) 64 [Erratum-ibid. B 407 (1997)

452] [arXiv:hep-th/9612128].

[6] A. Davidson, D. P. George, A. Kobakhidze, R. R. Volkas and K. C. Wali, Phys. Rev. D 77,

085031 (2008) [arXiv:0710.3432 [hep-ph]].

[7] B. V. Galilo and S. N. Nedelko, Phys. Part. Nucl. Lett. 8, 67 (2011) [arXiv:1006.0248 [hep-ph]].

[8] A. Kobakhidze, Int. J. Theor. Phys. 50, 1335 (2011) [arXiv:0807.4578 [hep-th]].

[9] R. Slansky, Phys. Rept. 79 (1981) 1.

[10] Y. M. Cho, J. H. Kim and D. G. Pak, Mod. Phys. Lett. A 21, 2789 (2006) [hep-ph/0701086].

[11] J. Tits, J Algebra 4 96-116 (1966)

[12] D. P. George “Domain-Wall Brane Models of an Infinite Extra Dimension” PhD Thesis, Uni-

versity of Melbourne, 2009.

[13] R. Kane, Reflection Groups and Invariant Theory, Springer-Verlag, New York 2001.

[14] S. Helgason, Differential Geometry, Lie Groups, and Symmeteric Spaces, Academic Press,

New York 1978.

X. APPENDIX

The Borel-de-Siebenthal theorem gives a systematic way of identifying the maximal Lie

subgroups of G directly from the extended Dynkin diagram for G [13]. It does this by

identifying which subset of the simple roots belonging to ∆, the root system for the Lie

algebra L of G, are also simple roots for ∆H , the subroot system of the Lie algebra LH

of maximal subgroup H ⊂ G. The nodes of the extended Dynkin diagram of G which are

labeled by simple roots ζ i which do not belong to ∆H are then removed, along with all

their adjacent edges. The remaining graph is the Dynkin diagram for H . If the subgroup

H ⊂ K ⊂ G, is not maximal then this procedure can be iterated to determine K ⊂ G and

H ⊂ K.

Theorem X.1. (Borel-de-Siebenthal) Let ∆ be an irreducible crystallographic root sys-

tem. Let {ζ1, . . . , ζ l} be the simple roots for ∆. Let ζ0 be the highest root of ∆ with respect

to {ζ1, . . . , ζ l}. Expand:
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ζ0 = Σiciζ
i (X.1)

Then the maximal closed subroot systems of ∆ (up to Weyl group reflections) are those with

fundamental systems

• {ζ1, ζ2, . . . , ζ̂ i, . . . , ζ l} where ci = 1;

• {−ζ0, ζ1, . . . , ζ̂ i, . . . , ζ l} where ci = p (prime)

Where “ζ̂ i” is being used to denote elimination.
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