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1. Symmetric functions
The symmetric group S, acts on the vector space

7" = Z-span{zq,...,xn} by WL = Loy (4),

for w € S, 1 < i < n. This action induces an action of S,, on the polynomial ring Z[X,,| =
Z[xy,...,zy] by ring automorphisms. For a sequence v = (1, ...,7,) of nonnegative integers let

=z a)n, so that Zzy,...,z,] = Z-span{z” | v € Z,}.
The ring of symmetric functions is
Z[X,)% = {f € Z[X,] | wf = f for all w € S, }, (1.1)
Define the orbit sums, or monomial symmetric functions, by

my = E x7, for A € ZY,,
YESHA

where S, A is the orbit of \ under the action of \S,,. Let
Pr={A=(,...;0) €Z% | M1 > - > X} (1.2)

so that
{mx | A€ PT} is a Z-basis of Z[X,]%". (1.3)

Partitions
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A partition is a collection p of boxes in a corner where the convention is that gravity goes up
and to the left. As for matrices, the rows and columns of i are indexed from top to bottom and
left to right, respectively.

The parts of p are  p; = (the number of boxes in row i of p),
the length of pis  £(u) = (the number of rows of u), (1.4)
the size of p is || = p1 + -+ + pguy = (the number of boxes of u).

Then p is determined by (and identified with) the sequence p = (1, ..., u¢) of positive integers
such that gy > pg > -+ > g > 0, where £ = {(u). For example,

(5,5,3,3,1,1) =

A partition of k is a partition A with k& boxes. Write A F k if A is a partition of k. Make the
convention that \; = 0if i > ¢(\). The dominance order is the partial order on the set of partitions
of k,

PT(k) = {partitions of k} = {A = (A1,..., ) [ A1 > > X >0, Ay +...+ X\ =k},
given by

A>p if M+ Ao+ + N >pur+pe+--+p forall 1 <i<max{l(A\),{(u)}.
PUT THE PICTURE OF THE HASSE DIAGRAM FOR k = 6 HERE.

Tableauz

Let A be a partition and let = (p1,...,4,) € Z%, be a sequence of nonnegative integers. A
column strict tableau of shape A and weight u is a filling of the boxes of A with uy 1s, us 2s, ...,
Wn ns, such that

(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight of p so that

shp(p) = (A1, ..., A\n), where \; = number of boxes in row i of p, and

wt(p) = (1, -, fn), where p; = number of is in p.

For example,

1] ]1]2]2]

p= [2]2|2|2]|3]3
313134445 has shp(p) =(9,7,7,4,2,1,0) and
4]5|5]6 wt(p) = (7,6,5,5,3,2,2).
6|7
7
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For a partition A and a sequence pt = (p1, ..., ity,) € Z>( of nonnegative integers write

B()\) = {column strict tableaux p | shp(p) = A},

1.5
B(\), = {column strict tableaux p | shp(p) = A and wt(p) = u}, (1.5)
Elementary symmetric functions
Define symmetric functions e,., 0 < r < n, via the generating function
n n
H(l —x;2) = Z(—l)rerzr.
i=1 r=0
Then eg = 1 and, for 0 < r < n,
€r = M1ry = Z Ly Lig *** T, = Z th(p)7
1<y <ig<-+<ip<n shp(p)=(1")
where the last sum is over all column strict tableaux p of shape (17).
If f(t) is a polyomial in ¢ with roots 71,..., 7, then
the coefficient of t" in f(¢) is (—=1)" "er (Y1, .-+, Vn)-
If A is an n x n matrix with entries in F with eigenvalues 71, ..., 7y, then the trace of the action of

A on the " exterior power of the vector space F” is

tr(A, N"F™) = e (71,...,Vn), sothat Tr(A)=e1(V1,...,7), det(A) =en(v1,-.,Vn),

and the characteristic polynomials of A is

n

Chart(A) = Z(_l)n_ren—r(yla s 7’7ﬂ)tr'
r=0

Proposition 1.6. Let A\ = (A1,...,\,) be a partition. Then

e\ = g ax My,

n<A

where ay, is the number of matrices with entries from {0,1} with row sums A" and column sums
p. Furthermore, ay ) = 1 and ay, = 0 unless p < .

Proof. If A is an ¢ x n matrix with entries from {0,1} let

n

= [ )

i=1
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and define

rs(A) = (p1,. -+, Pn)s n
where pi = a;; and y; = Qi
CS(A) = (717"'7771)7 X_: ! ! ; !

so that rs(A) and cs(A) are the sequences of row sums and column sums of A, respectively. If
N = (A],...,A)) then

¢
ex = H ex. = E zt = E E r7 = E :az\'umu
J
=1

rs(A)=X\ YELL ) rs(A)=)
= es(A)=v

Since there is a unique matrix A with rs(A) = X and ¢s(A) = A, ayn = 1. If A is a 0,1 matrix
with rs(A) = X and ¢s(A) = mu then pq + -+ 4+ p; < A + -+ + A; since there are at most
A1 + - -+ + A; nonzero entries in the first ¢ columns of A. Thus ay/, = 0 unless p < A. 11

Corollary 1.7.
(a) The set {ey | £(\) < n} is a basis of Z[X,,]%"

(b) Z[X,)%" = Zley, ..., en).

Complete symmetric functions

Define symmetric functions h,., r € Z>¢, via the generating function

n

Hl—xl th

=1 r€L>0

Then hg = 1 and, for r € Z~q,

hr = Zm)\ = Z L Ljy =" " Xg,. = Z {L'Wt(p),

A7 1<i1 <ip<-<ip<n sh(p)=(r)
where the last sum is over all column strict tableaux p of shape (r).

Proposition 1.8. There is an involutive automorphism w of Z[X,]°" defined by

w: Z[X,]5 — Z[X,])5
ek — hy,

Proof. Comparing coefficients of z* on each side of

n n k
1= (H (1—zi2 ) (H TR > yields 0= (=1)"ephn_,.

i=1 i=1 r=1
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Corollary 1.9.
(a) The set {hy | £(\') < n} is a basis of Z[X,,]"

(b) Z[X,]%" = Z[hy, ..., hy).

Theorem 1.10. The monomials in {x{'z5* --- x5 | 0 < €; < n —i} form a basis of Z[x1,. .., xy]

as an Z[z1, . .., z,]°" module.

Proof. Let I = (e1,...,e,) be the ideal in Z[xy,...,x,] generated by ej,...,e,. Since (1 —
x1t) -+ (1 —zpt) =0 mod I,

1—aiqt)--- (1 —zut) = dI,
( Tit+1 ) ( T ) (1—$1t)'~'(1—:17it) mo
and so '
Z(—l)rer($i+1, o)t = Z ho(zy,. ..zt mod 1.
r=0 £>0

Comparing coefficients of t"~*1 on each side gives that, for all 1 < i < n,

n—i+1
0= hn—i—l—l(xla e ,ZL‘Z') = Z {L‘?iprlirhf(ﬂ}l, e ,a:i_l) mod I,
r=0
and thus
n—i+1
n H—l Z .Tn i+l rh (1‘1, . ,$i_1) mod 1. (111)

This identity shows (by induction on 7) that $?_i+1 can be rewritten, mod I, as a linear combination
of monomials in z1,...,x; with the exponent of x; being < n — 4. In particular,

0= hn,1+1($1) = .T? mod [

and it follows that any polynomial can be written, mod I, as a linear combination of monomials

xS e with 0<¢ <n—i. (1.12)
If S* is the set of homogeneous degree k polynomials in S = Z[zy,...,2,] and (S")¥ is the set
of homogeneous degree k polynomials in SV = Zley,...,e,] = Z[x1,...,2,]" the the Poincaré

series of S and SW are

l—t Zdlm Sk k and ﬁ(l—t’) Zdlm SW

k>0 i=1 k>0
Then the Poincaré series of S/I is
Tl-t
H1 =1-(14+t)---(L+t4---t"h).

=1
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There are n(n —1)---2-1 = n! monomials in (???) and thus the monomials in (*) form a basis of
S as an S" module. The relations (???) provide a way to expand any polynomial in terms of this
basis (with coefficients in ). I

2. The groups G, ,

Let r and n be postive integers. The group G, 1, is the group of n x n matrices with
(a) exactly one non zero entry in each row and each column,

th

(b) the nonzero entries are r*" roots of 1.

Let p be a positive integer (not necessarily prime) such that p divides r. The group G, ,, is defined
by the exact sequence

p

{1} — Gr,p,n — Gr,l,n i’ Z/pZ - {1} ) where ¢(g) = H gij
9i5 70

is the p*® power of the product of the nonzero entries of g, and Z/pZ is identified with the group
of p*™ roots of unity. Thus G, , = ker ¢ is a normal subgroup of G,.1,, of index p. Examples are

(a) G11,n = Sn = WA, _1 is the symmetric group (the Weyl group of type A4,,_1),

(b) G2,1.n = On(Z) = W B, is the hyperoctahedral group of orthogonal matrices with entries
in Z (the Weyl group of type B,,),

(¢) Ga2.,, = WD, is the group of signed permutations with an even number of negative signs
(the Weyl group of type D,,),

(d) G,1.1 = Z/rZ is the cyclic group of order 7 of 7! roots of unity, and
(e) Gyr2 = WIy(r) is the dihedral group of order 2r.

Let & = €2™/" be a primitive rth root of unity and let o = Z[¢]. If x1,...,z, is a basis of 0"
then the natural action of G, ), extends uniquely to an action of G, ,, on the polynomial ring
o[z1,...,Z,] by ring automorphisms. The invariant ring is

o[z1,...,xn]9 = {f €olz1,...,zn] | wf = f for all w € Grpn}-

Proposition 2.1. Let

filzy,...,zy) =ei(2],...,2;), forl1<i<n-—1 and
fo(z1, . xp) = en(:v;/p, - ,zz/p).

(a) olxy,..., 2, P =0[f1,..., fu].

(b) o[z1,...,x,] is a free o|xy, ..., x,|9 Pm-module with basis

{z{'x? 257 |0< e <r/p—1land0<e¢ <ir—1, for2<i<n}.

Proof. To show: fi,..., f, generate o[X,]" and they are algebraically independent. |
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Each element w € G 1,5, can be written uniquely in the form
w=t"tIo, where t; = diag(1,...,1,£,1,...,1), 0€S8,, 0<y <r-—1,

so that ¢; is the diagonal matrix with 1s on the diagonal except for £ in the i*® diagonal entry. The
element
w € Grpn if Y1+ +7% =0 mod p,

and thus
Grpn={w=t]"-tlro|oe S, 0<y, <r/p—1l,and 0 <, <r—1forl1<i<n-1}

For each w € G5, define a monomial

n

Ty — H(:L‘O_(l) . ‘/L‘O'(j))’yj H (:Llo'(l) P ‘/EO'(Z))

=1 i suchthat
o(i)>o(i+1)

G

Proposition 2.2. The polynomial ring o[z, ..., z,] is a free o[x1, ..., x,|“"?"-module with basis

{ow | W E Gy}
Proof. 1

3. General W

Theorem 3.1. Let V be a finite dimensional vector space over a field F. Let W be a finite
subgroup of GL(V). If S(V)W is a polynomial algebra then W is generated by reflections.

Proof. Let
I=(feSWV)" | f(0)=0),

be the ideal in S(V') generated by polynomials without constant term. Let ey, ..., e, be homoge-
neous generators of I (which exist, by Hilbert).

Step 1. Every f € S(V)W is a polynomial in ey, ..., e,.

Proof. The proof is by induction on the degree of f. Assume f is homogeneous and deg(f) > 0.
Since f € I,

f= Zpiei, with p; € S(V),
i=1

and so

1 . 1
f_Ww;wa_iZ:;(W Z wpi) €,

weWw
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and since the internal sum has lower degree it can be written as a polynomial in eq,...,e.. 1
Step 2. r = dim(V).

Proof. Let n = dim(V), let x1,...,x, be a basis of V and let C(z1,...,z,) be the field of fractions
of S(V)) = Clzy,...,x,]. Since x; is a root of

mi(t) = [ ¢t —wz) €SV,

weWw

the variable z; is algebraic over C(ey,...,e,) the field of fractions of S(V)W. Thus

0 = trdeg (W) = trdeg <W> — trdeg <W> =n-—r. ]

Step 3. The Jacobian of a map

e V. — 4 : _ i
r o (p1@) (@) O J@(x)‘det<axj>'

If ¢ is linear then there are ¢;; € C such that

gbl(x) = quijl‘j and J<P = det(gbij).
j=1

The chain rule is the identity
Joop = Jo(px)Jp ().

Let

0: V. — \% w: V. — V
and
xr — (e1(x),...,eq(x)) r — wx

for w e W. Then 6 ow = 0 and so
Jo(x) = Jgow(x) = Jo(wz)Jyw(x) = Jo(wz) det(w) = det(w)(w™*Jg)(z).

Thus Jy is W-alternating and so Jy is divisible by

A= H oL, Since deg(Jp) = Z(dz —1) = Card(R™),

a€Rt i=1

and so Jy = A+ A for some A € C. |
Step 4. The polynomials ey, ..., e, are algebraically independent if and only if Jy # 0.

Proof. =: Assume e, ..., e, are algebraically independent.
Then z; are algebraic over C(ey,...,e,).

Clzy,...,xn Clz1,...,xn) C(er,...,er)
trdeg ((C(el, — ’€T)> trdeg ( C trdeg C >n—r
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So x1,...,x, are algebraic over C(ey,...,e,) if and only if 0 > n — r, that is, if and only if n = r.
Let m;(t) € S(V)W[t] be the minimal polynomial of z; over C(ey, ..., e,), the field of fractions
of S(V)W. Then

om; Z om; Oe; 8mi ot
Oxk Oe; &Uk ot Ozy

and

Thus

det <({;Zl (%)) - Jp = det ( — diag(m/ (x1), ..., m;(xn)) = (-1)" Hm;($z>

Since m;(t) is the minimal polynomial of z;, each factor m/(x;) # 0 and, thus, Jy # 0.

<: Assume e; ..., e, are algebraically dependent. Let f(y1,...,y,) be of minimal degree such that
fle1,...,en) =0. Then
0 0
/ # 0 for some y;, and so gi = f(el,...,en) #0 for some i.
Oy; dy;
But

_Of(er,...,en) " af Oe; "L e B
- partialz; ; Oy; (e1,--sen) ox;’ and so Zgz ox;

So g; is a solution to the equation (g1, ... ,gn)((‘)ei/(‘)x]—) =0andso Jy=0. 1
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