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1. Symmetric functions

The symmetric group Sn acts on the vector space

Zn = Z-span{x1, . . . , xn} by wxi = xw(i),

for w ∈ Sn, 1 ≤ i ≤ n. This action induces an action of Sn on the polynomial ring Z[Xn] =
Z[x1, . . . , xn] by ring automorphisms. For a sequence γ = (γ1, . . . , γn) of nonnegative integers let

xγ = xγ1
1 · · ·xγn

n , so that Z[x1, . . . , xn] = Z-span{xγ | γ ∈ Zn
≥0}.

The ring of symmetric functions is

Z[Xn]Sn = {f ∈ Z[Xn] | wf = f for all w ∈ Sn}, (1.1)

Define the orbit sums, or monomial symmetric functions, by

mλ =
∑

γ∈Snλ

xγ , for λ ∈ Zn
≥0,

where Snλ is the orbit of λ under the action of Sn. Let

P+ = {λ = (λ1, . . . , λn) ∈ Zn
≥0 | λ1 ≥ · · · ≥ λn} (1.2)

so that
{mλ | λ ∈ P+} is a Z-basis of Z[Xn]Sn . (1.3)
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A partition is a collection µ of boxes in a corner where the convention is that gravity goes up
and to the left. As for matrices, the rows and columns of µ are indexed from top to bottom and
left to right, respectively.

The parts of µ are µi = (the number of boxes in row i of µ),
the length of µ is `(µ) = (the number of rows of µ),
the size of µ is |µ| = µ1 + · · ·+ µ`(µ) = (the number of boxes of µ).

(1.4)

Then µ is determined by (and identified with) the sequence µ = (µ1, . . . , µ`) of positive integers
such that µ1 ≥ µ2 ≥ · · · ≥ µ` > 0, where ` = `(µ). For example,

(5, 5, 3, 3, 1, 1) = .

A partition of k is a partition λ with k boxes. Write λ ` k if λ is a partition of k. Make the
convention that λi = 0 if i > `(λ). The dominance order is the partial order on the set of partitions
of k,

P+(k) = {partitions of k} = {λ = (λ1, . . . , λ`) | λ1 ≥ · · · ≥ λ` > 0, λ1 + . . . + λ` = k},

given by

λ ≥ µ if λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi for all 1 ≤ i ≤ max{`(λ), `(µ)}.

PUT THE PICTURE OF THE HASSE DIAGRAM FOR k = 6 HERE.

Tableaux

Let λ be a partition and let µ = (µ1, . . . , µn) ∈ Zn
≥0 be a sequence of nonnegative integers. A

column strict tableau of shape λ and weight µ is a filling of the boxes of λ with µ1 1s, µ2 2s, . . .,
µn ns, such that

(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight of p so that

shp(p) = (λ1, . . . , λn), where λi = number of boxes in row i of p, and
wt(p) = (µ1, . . . , µn), where µi = number of i s in p.

For example,

p =

has shp(p) = (9, 7, 7, 4, 2, 1, 0) and
wt(p) = (7, 6, 5, 5, 3, 2, 2).
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For a partition λ and a sequence µ = (µ1, . . . , µn) ∈ Z≥0 of nonnegative integers write

B(λ) = {column strict tableaux p | shp(p) = λ},
B(λ)µ = {column strict tableaux p | shp(p) = λ and wt(p) = µ},

(1.5)

Elementary symmetric functions

Define symmetric functions er, 0 ≤ r ≤ n, via the generating function

n∏
i=1

(1− xiz) =
n∑

r=0

(−1)rerz
r.

Then e0 = 1 and, for 0 ≤ r ≤ n,

er = m(1r) =
∑

1≤i1<i2<···<ir≤n

xi1xi2 · · ·xir =
∑

shp(p)=(1r)

xwt(p),

where the last sum is over all column strict tableaux p of shape (1r).
If f(t) is a polyomial in t with roots γ1, . . . , γn then

the coefficient of tr in f(t) is (−1)n−rer(γ1, . . . , γn).

If A is an n×n matrix with entries in F with eigenvalues γ1, . . . , γn then the trace of the action of
A on the rth exterior power of the vector space Fn is

tr(A,
∧r Fn) = er(γ1, . . . , γn), so that Tr(A) = e1(γ1, . . . , γn), det(A) = en(γ1, . . . , γn),

and the characteristic polynomials of A is

chart(A) =
n∑

r=0

(−1)n−ren−r(γ1, . . . , γn)tr.

Proposition 1.6. Let λ = (λ1, . . . , λn) be a partition. Then

eλ′ =
∑
µ≤λ

aλ′µmµ,

where aλ′µ is the number of matrices with entries from {0, 1} with row sums λ′ and column sums
µ. Furthermore, aλ′λ = 1 and aλ′µ = 0 unless µ ≤ λ.

Proof. If A is an `× n matrix with entries from {0, 1} let

xA =
n∏

i=1

(xi)aij
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and define

rs(A) = (ρ1, . . . , ρn),
cs(A) = (γ1, . . . , γn),

where ρi =
∑̀
j=1

aij and γj =
n∑

i=1

aij ,

so that rs(A) and cs(A) are the sequences of row sums and column sums of A, respectively. If
λ′ = (λ′1, . . . , λ

′
`) then

eλ′ =
∏̀
j=1

eλ′
j

=
∑

rs(A)=λ′

xA =
∑

γ∈Zn
≥0

∑
rs(A)=λ′
cs(A)=γ

xγ =
∑

µ

aλ′µmµ.

Since there is a unique matrix A with rs(A) = λ′ and cs(A) = λ, aλ′λ = 1. If A is a 0, 1 matrix
with rs(A) = λ′ and cs(A) = mu then µ1 + · · · + µi ≤ λ1 + · · · + λi since there are at most
λ1 + · · ·+ λi nonzero entries in the first i columns of A. Thus aλ′µ = 0 unless µ ≤ λ.

Corollary 1.7.
(a) The set {eλ | `(λ′) ≤ n} is a basis of Z[Xn]Sn .

(b) Z[Xn]Sn = Z[e1, . . . , en].

Complete symmetric functions

Define symmetric functions hr, r ∈ Z≥0, via the generating function

n∏
i=1

1
1− xiz

=
∑

r∈Z≥0

hrz
r.

Then h0 = 1 and, for r ∈ Z>0,

hr =
∑
λ`r

mλ =
∑

1≤i1≤i2≤···≤ir≤n

xi1xi2 · · ·xir
=

∑
sh(p)=(r)

xwt(p),

where the last sum is over all column strict tableaux p of shape (r).

Proposition 1.8. There is an involutive automorphism ω of Z[Xn]Sn defined by

ω: Z[Xn]Sn −→ Z[Xn]Sn

ek 7−→ hk

Proof. Comparing coefficients of zk on each side of

1 =

(
n∏

i=1

(1− xiz)

)(
n∏

i=1

1
1− xiz

)
yields 0 =

k∑
r=1

(−1)rerhn−r.
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Corollary 1.9.
(a) The set {hλ | `(λ′) ≤ n} is a basis of Z[Xn]Sn .

(b) Z[Xn]Sn = Z[h1, . . . , hn].

Theorem 1.10. The monomials in {xε1
1 xε2

2 · · ·xεn
n | 0 ≤ εi ≤ n− i} form a basis of Z[x1, . . . , xn]

as an Z[x1, . . . , xn]Sn module.

Proof. Let I = 〈e1, . . . , en〉 be the ideal in Z[x1, . . . , xn] generated by e1, . . . , en. Since (1 −
x1t) · · · (1− xnt) = 0 mod I,

(1− xi+1t) · · · (1− xnt) =
1

(1− x1t) · · · (1− xit)
mod I,

and so
n−i∑
r=0

(−1)rer(xi+1, . . . , xn)tr =
∑
`≥0

h`(x1, . . . , xi)t` mod I.

Comparing coefficients of tn−i+1 on each side gives that, for all 1 ≤ i ≤ n,

0 = hn−i+1(x1, . . . , xi) =
n−i+1∑

r=0

xn−i+1−r
i hr(x1, . . . , xi−1) mod I,

and thus

xn−i+1
i = −

n−i+1∑
r=1

xn−i+1−r
i hr(x1, . . . , xi−1) mod I. (1.11)

This identity shows (by induction on i) that xn−i+1
i can be rewritten, mod I, as a linear combination

of monomials in x1, . . . , xi with the exponent of xi being ≤ n− i. In particular,

0 = hn−1+1(x1) = xn
1 mod I

and it follows that any polynomial can be written, mod I, as a linear combination of monomials

xε1
1 xε2

2 · · ·xεn
n with 0 ≤ εi ≤ n− i. (1.12)

If Sk is the set of homogeneous degree k polynomials in S = Z[x1, . . . , xn] and (SW )k is the set
of homogeneous degree k polynomials in SW = Z[e1, . . . , en] = Z[x1, . . . , xn]Sn the the Poincaré
series of S and SW are

1
(1− t)n

=
∑
k≥0

dim(Sk)tk and
n∏

i=1

(
1

1− ti

)
=
∑
k≥0

dim((SW )k)tk.

Then the Poincaré series of S/I is

n∏
i=1

1− ti

1− t
= [n]! = 1 · (1 + t) · · · (1 + t + · · · tn−1).
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There are n(n− 1) · · · 2 · 1 = n! monomials in (???) and thus the monomials in (*) form a basis of
S as an SW module. The relations (???) provide a way to expand any polynomial in terms of this
basis (with coefficients in SW ).

2. The groups Gr,p,n

Let r and n be postive integers. The group Gr,1,n is the group of n× n matrices with
(a) exactly one non zero entry in each row and each column,
(b) the nonzero entries are rth roots of 1.

Let p be a positive integer (not necessarily prime) such that p divides r. The group Gr,p,n is defined
by the exact sequence

{1} −→ Gr,p,n −→ Gr,1,n
φ−→ Z/pZ −→ {1} , where φ(g) =

 ∏
gij 6=0

gij

p

is the pth power of the product of the nonzero entries of g, and Z/pZ is identified with the group
of pth roots of unity. Thus Gr,p,n = kerφ is a normal subgroup of Gr,1,n of index p. Examples are

(a) G1,1,n = Sn = WAn−1 is the symmetric group (the Weyl group of type An−1),
(b) G2,1,n = On(Z) = WBn is the hyperoctahedral group of orthogonal matrices with entries

in Z (the Weyl group of type Bn),
(c) G2,2,n = WDn is the group of signed permutations with an even number of negative signs

(the Weyl group of type Dn),
(d) Gr,1,1 = Z/rZ is the cyclic group of order r of rth roots of unity, and
(e) Gr,r,2 = WI2(r) is the dihedral group of order 2r.
Let ξ = e2πi/r be a primitive rth root of unity and let o = Z[ξ]. If x1, . . . , xn is a basis of on

then the natural action of Gr,p,n extends uniquely to an action of Gr,p,n on the polynomial ring
o[x1, . . . , xn] by ring automorphisms. The invariant ring is

o[x1, . . . , xn]Gr,p,n = {f ∈ o[x1, . . . , xn] | wf = f for all w ∈ Gr,p,n}.

Proposition 2.1. Let

fi(x1, . . . , xn) = ei(xr
1, . . . , x

r
n), for 1 ≤ i ≤ n− 1 and

fn(x1, . . . , xn) = en(xr/p
1 , . . . , xr/p

n ).

(a) o[x1, . . . , xn]Gr,p,n = o[f1, . . . , fn].
(b) o[x1, . . . , xn] is a free o[x1, . . . , xn]Gr,p,n -module with basis

{xε1
1 xε2

2 · · ·xεn
n | 0 ≤ ε1 ≤ r/p− 1 and 0 ≤ εi ≤ ir − 1, for 2 ≤ i ≤ n}.

Proof. To show: f1, . . . , fn generate o[Xn]W and they are algebraically independent.
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Each element w ∈ Gr,1,n can be written uniquely in the form

w = tγ1
1 · · · tγn

n σ, where ti = diag(1, . . . , 1, ξ, 1, . . . , 1), σ ∈ Sn, 0 ≤ γi ≤ r − 1,

so that ti is the diagonal matrix with 1s on the diagonal except for ξ in the ith diagonal entry. The
element

w ∈ Gr,p,n if γ1 + · · ·+ γn = 0 mod p,

and thus

Gr,p,n = {w = tγ1
1 · · · tγn

n σ | σ ∈ Sn, 0 ≤ γn ≤ r/p− 1, and 0 ≤ γi ≤ r − 1 for 1 ≤ i ≤ n− 1}.

For each w ∈ Gr,p,n define a monomial

xw =

 n∏
j=1

(xσ(1) · · ·xσ(j))γj


 ∏

i suchthat
σ(i)>σ(i+1)

(xσ(1) · · ·xσ(i))

 .

Proposition 2.2. The polynomial ring o[x1, . . . , xn] is a free o[x1, . . . , xn]Gr,p,n -module with basis

{xw | w ∈ Gr,p,n}.

Proof.

3. General W

Theorem 3.1. Let V be a finite dimensional vector space over a field F. Let W be a finite
subgroup of GL(V ). If S(V )W is a polynomial algebra then W is generated by reflections.

Proof. Let
I = 〈f ∈ S(V )W | f(0) = 0〉,

be the ideal in S(V ) generated by polynomials without constant term. Let e1, . . . , er be homoge-
neous generators of I (which exist, by Hilbert).
Step 1. Every f ∈ S(V )W is a polynomial in e1, . . . , er.

Proof. The proof is by induction on the degree of f . Assume f is homogeneous and deg(f) > 0.
Since f ∈ I,

f =
r∑

i=1

piei, with pi ∈ S(V ),

and so

f =
1
|W |

∑
w∈W

wf =
r∑

i=1

(
1
|W |

∑
w∈W

wpi

)
ei,
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and since the internal sum has lower degree it can be written as a polynomial in e1, . . . , er.

Step 2. r = dim(V ).

Proof. Let n = dim(V ), let x1, . . . , xn be a basis of V and let C(x1, . . . , xn) be the field of fractions
of S(V ) = C[x1, . . . , xn]. Since xi is a root of

mi(t) =
∏

w∈W

(t− wxi) ∈ S(V )W [t],

the variable xi is algebraic over C(e1, . . . , er) the field of fractions of S(V )W . Thus

0 = trdeg
(

C(x1, . . . , xn

C(e1, . . . , er)

)
= trdeg

(
C(x1, . . . , xn)

C

)
− trdeg

(
C(e1, . . . , er)

C

)
= n− r.

Step 3. The Jacobian of a map

ϕ: V −→ V
x 7−→ (ϕ1(x), . . . , ϕn(x)) is Jϕ(x) = det

(
∂ϕi

∂xj

)
.

If ϕ is linear then there are φij ∈ C such that

φi(x) =
n∑

j=1

φijxj and Jϕ = det(φij).

The chain rule is the identity
Jθ◦ϕ = Jθ(ϕx)Jϕ(x).

Let
θ: V −→ V

x −→ (e1(x), . . . , en(x)) and w: V −→ V
x −→ wx

for w ∈ W . Then θ ◦ w = θ and so

Jθ(x) = Jθ◦w(x) = Jθ(wx)Jw(x) = Jθ(wx) det(w) = det(w)(w−1Jθ)(x).

Thus Jθ is W -alternating and so Jθ is divisible by

∆ =
∏

α∈R+

αrα−1. Since deg(Jθ) =
n∑

i=1

(di − 1) = Card(R+),

and so Jθ = λ ·∆ for some λ ∈ C.

Step 4. The polynomials e1, . . . , en are algebraically independent if and only if Jθ 6= 0.

Proof. ⇒: Assume e1, . . . , er are algebraically independent.
Then xi are algebraic over C(e1, . . . , er).

trdeg
(

C(x1, . . . , xn

C(e1, . . . , er)

)
= trdeg

(
C(x1, . . . , xn)

C

)
− trdeg

(
C(e1, . . . , er)

C

)
≥ n− r.
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So x1, . . . , xn are algebraic over C(e1, . . . , er) if and only if 0 ≥ n− r, that is, if and only if n = r.
Let mi(t) ∈ S(V )W [t] be the minimal polynomial of xi over C(e1, . . . , en), the field of fractions

of S(V )W . Then
∂mi

∂xk
=

r∑
j=1

∂mi

∂ej

∂ej

∂xk
+

∂mi

∂t

∂t

∂xk

and

0 =
∂mi(xi)

∂xk
=

r∑
j=1

∂mi

∂ej
(xi)

∂ej

∂xk
+ m′

i(xi)δik.

Thus

det
(

∂mi

∂ej
(xi)

)
· Jθ = det

(
− diag(m′

1(x1), . . . ,m′
n(xn)

)
= (−1)n

r∏
i=1

m′
i(xi).

Since mi(t) is the minimal polynomial of xi, each factor m′
i(xi) 6= 0 and, thus, Jθ 6= 0.

⇐: Assume e1 . . . , en are algebraically dependent. Let f(y1, . . . , yn) be of minimal degree such that
f(e1, . . . , en) = 0. Then

∂f

∂yi
6= 0 for some yi, and so gi =

∂f

∂yi
(e1, . . . , en) 6= 0 for some i.

But

0 =
∂f(e1, . . . , en)

partialxj
=

n∑
i=1

∂f

∂yi
(e1, . . . , en)

∂ei

∂xj
, and so

n∑
i=1

gi
∂ei

∂xj
= 0.

So gi is a solution to the equation (g1, . . . , gn)
(
∂ei/∂xj

)
= 0 and so Jθ = 0.
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